{"title":"Brain analysis to approach human muscles synergy using deep learning.","authors":"Elham Samadi, Fereidoun Nowshiravan Rahatabad, Ali Motie Nasrabadi, Nader Jafarnia Dabanlou","doi":"10.1007/s11571-025-10228-y","DOIUrl":null,"url":null,"abstract":"<p><p>Brain signals and muscle movements have been analyzed using electroencephalogram (EEG) data in several studies. EEG signals contain a lot of noise, such as electromyographic (EMG) waves. Further studies have been done to improve the quality of the results, though it is thought that the combination of these two signals can lead to a significant improvement in the synergistic analysis of muscle movements and muscle connections. Using graph theory, this study examined the interaction of EMG and EEG signals during hand movement and estimated the synergy between muscle and brain signals. Mapping of the brain diagram was also developed to reconstruct the muscle signals from the muscle connections in the brain diagram. The proposed method included noise removal from EEG and EMG signals, graph feature analysis from EEG, and synergy calculation from EMG. Two methods were used to estimate synergy. In the first method, after calculating the brain connections, the features of the communication graph were extracted and then synergy estimating was made with neural networks. In the second method, a convolutional network created a transition from the matrix of brain connections to the synergistic EMG signal. This study reached the high correlation values of 99.8% and maximum MSE error of 0.0084. Compared to other graph-based methods, this method based on regression analysis had a very significant performance. This research can lead to the improvement of rehabilitation methods and brain-computer interfaces.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"44"},"PeriodicalIF":3.1000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11846801/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-025-10228-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Brain signals and muscle movements have been analyzed using electroencephalogram (EEG) data in several studies. EEG signals contain a lot of noise, such as electromyographic (EMG) waves. Further studies have been done to improve the quality of the results, though it is thought that the combination of these two signals can lead to a significant improvement in the synergistic analysis of muscle movements and muscle connections. Using graph theory, this study examined the interaction of EMG and EEG signals during hand movement and estimated the synergy between muscle and brain signals. Mapping of the brain diagram was also developed to reconstruct the muscle signals from the muscle connections in the brain diagram. The proposed method included noise removal from EEG and EMG signals, graph feature analysis from EEG, and synergy calculation from EMG. Two methods were used to estimate synergy. In the first method, after calculating the brain connections, the features of the communication graph were extracted and then synergy estimating was made with neural networks. In the second method, a convolutional network created a transition from the matrix of brain connections to the synergistic EMG signal. This study reached the high correlation values of 99.8% and maximum MSE error of 0.0084. Compared to other graph-based methods, this method based on regression analysis had a very significant performance. This research can lead to the improvement of rehabilitation methods and brain-computer interfaces.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.