Yuqing Wang, Fangyu Ye, Xinbo Wei, Manman Wang, Zheng Xing, Haifeng Liu
{"title":"Electrospun Silk Fibroin-Silk Sericin Scaffolds Induced Macrophage Polarization and Vascularization for Volumetric Muscle Loss Injury.","authors":"Yuqing Wang, Fangyu Ye, Xinbo Wei, Manman Wang, Zheng Xing, Haifeng Liu","doi":"10.3390/jfb16020056","DOIUrl":null,"url":null,"abstract":"<p><p>Volumetric muscle loss (VML) results in the impediment of skeletal muscle function. Tissue engineering scaffolds have been widely developed and used in skeletal muscle regeneration. However, scaffold implantation causes an immune response that endogenously regulates implant integration and tissue regeneration. Moreover, vascularization is thought to be a principal obstacle in the reconstruction of skeletal muscle defects. Thus, creating a pro-regenerative microenvironment that facilitates muscle regeneration and supports angiogenesis represents a promising strategy for tissue repair following volumetric muscle loss (VML) injury. Previously, the electrospun silk fibroin-silk sericin (SF-SS) film could regulate macrophage polarization and promote neovessel formation. This study aimed to investigate if the electrospun SF-SS scaffold was capable of supporting functional muscle regeneration. The results indicate that the conditioned medium collected from macrophages co-cultured with the 7:3 SF-SS scaffold significantly enhanced the proliferation and migration of myoblast C2C12 cells and improved the tube formation of HUVECs. Data from animal studies showed that the 7:3 SF-SS scaffold significantly enhanced M2 macrophage polarization, vascularization, and muscle fiber regeneration, reduced fibrosis, and improved muscle function after VML injury, thereby promoting the repair of muscle tissue. Therefore, the 7:3 SF-SS scaffold might represent a potential candidate for skeletal muscle regeneration following VML injury.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 2","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16020056","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Volumetric muscle loss (VML) results in the impediment of skeletal muscle function. Tissue engineering scaffolds have been widely developed and used in skeletal muscle regeneration. However, scaffold implantation causes an immune response that endogenously regulates implant integration and tissue regeneration. Moreover, vascularization is thought to be a principal obstacle in the reconstruction of skeletal muscle defects. Thus, creating a pro-regenerative microenvironment that facilitates muscle regeneration and supports angiogenesis represents a promising strategy for tissue repair following volumetric muscle loss (VML) injury. Previously, the electrospun silk fibroin-silk sericin (SF-SS) film could regulate macrophage polarization and promote neovessel formation. This study aimed to investigate if the electrospun SF-SS scaffold was capable of supporting functional muscle regeneration. The results indicate that the conditioned medium collected from macrophages co-cultured with the 7:3 SF-SS scaffold significantly enhanced the proliferation and migration of myoblast C2C12 cells and improved the tube formation of HUVECs. Data from animal studies showed that the 7:3 SF-SS scaffold significantly enhanced M2 macrophage polarization, vascularization, and muscle fiber regeneration, reduced fibrosis, and improved muscle function after VML injury, thereby promoting the repair of muscle tissue. Therefore, the 7:3 SF-SS scaffold might represent a potential candidate for skeletal muscle regeneration following VML injury.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.