Arsalan D Badaraev, Evgenii V Plotnikov, Vladislav R Bukal, Gleb E Dubinenko, Johannes Frueh, Sven Rutkowski, Sergei I Tverdokhlebov
{"title":"Fabrication of PVA Coatings Applied to Electrospun PLGA Scaffolds to Prevent Postoperative Adhesions.","authors":"Arsalan D Badaraev, Evgenii V Plotnikov, Vladislav R Bukal, Gleb E Dubinenko, Johannes Frueh, Sven Rutkowski, Sergei I Tverdokhlebov","doi":"10.3390/jfb16020057","DOIUrl":null,"url":null,"abstract":"<p><p>There is currently a demand for anti-adhesive materials that are capable of preventing the formation of intra-abdominal adhesions. In this study, electrospun poly(lactide-co-glycolide) scaffolds were dip-coated in aqueous solutions of polyvinyl alcohol with concentrations of 3 wt.%, 6 wt.% and 9 wt.% to obtain a nontoxic and anti-adhesive biomedical material. The viscosities of the applied 3 wt.%, 6 wt.% and 9 wt.% polyvinyl alcohol solutions were 7.7 mPa∙s, 38.2 mPa∙s and 180.8 mPa∙s, respectively, and increased exponentially. It is shown that increasing the viscosity of the polyvinyl alcohol solution from 6 wt.% to 9 wt.% increases the thickness of the polyvinyl alcohol layer from (3.32 ± 0.97) µm to (8.09 ± 1.43) µm. No pronounced polyvinyl alcohol layer can be observed on samples dip-coated in 3 wt.% PVA solution. Increasing the viscosity of the polyvinyl alcohol solution from 3 wt.% to 9 wt.% increases the mechanical properties of the poly(lactide-co-glycolide) samples by a factor of 1.16-1.45. Cytotoxicity analysis of all samples reveals that none is toxic to 3T3-L1 fibroblast cells. A cell adhesion assay indicates that the anti-adhesion properties increase with increasing viscosity of the polyvinyl alcohol solution and the thickness of the polyvinyl alcohol layer on the poly(lactide-co-glycolide) scaffolds. Fluorescence images of the cells show that as the thickness of the polyvinyl alcohol coating increases, the number of cells decreases, and they do not cover the surface of the samples and form spherical three-dimensional agglomerates. The highest mechanical and anti-adhesion properties are obtained with the poly(lactide-co-glycolide) scaffold sample dip-coated in the 9 wt.% polyvinyl alcohol solution. This is because this sample has the thickest polyvinyl alcohol coating.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 2","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16020057","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
There is currently a demand for anti-adhesive materials that are capable of preventing the formation of intra-abdominal adhesions. In this study, electrospun poly(lactide-co-glycolide) scaffolds were dip-coated in aqueous solutions of polyvinyl alcohol with concentrations of 3 wt.%, 6 wt.% and 9 wt.% to obtain a nontoxic and anti-adhesive biomedical material. The viscosities of the applied 3 wt.%, 6 wt.% and 9 wt.% polyvinyl alcohol solutions were 7.7 mPa∙s, 38.2 mPa∙s and 180.8 mPa∙s, respectively, and increased exponentially. It is shown that increasing the viscosity of the polyvinyl alcohol solution from 6 wt.% to 9 wt.% increases the thickness of the polyvinyl alcohol layer from (3.32 ± 0.97) µm to (8.09 ± 1.43) µm. No pronounced polyvinyl alcohol layer can be observed on samples dip-coated in 3 wt.% PVA solution. Increasing the viscosity of the polyvinyl alcohol solution from 3 wt.% to 9 wt.% increases the mechanical properties of the poly(lactide-co-glycolide) samples by a factor of 1.16-1.45. Cytotoxicity analysis of all samples reveals that none is toxic to 3T3-L1 fibroblast cells. A cell adhesion assay indicates that the anti-adhesion properties increase with increasing viscosity of the polyvinyl alcohol solution and the thickness of the polyvinyl alcohol layer on the poly(lactide-co-glycolide) scaffolds. Fluorescence images of the cells show that as the thickness of the polyvinyl alcohol coating increases, the number of cells decreases, and they do not cover the surface of the samples and form spherical three-dimensional agglomerates. The highest mechanical and anti-adhesion properties are obtained with the poly(lactide-co-glycolide) scaffold sample dip-coated in the 9 wt.% polyvinyl alcohol solution. This is because this sample has the thickest polyvinyl alcohol coating.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.