Comparative Genomics and Characterisation of the Role of Saccharomyces cerevisiae Respiration in the Fermentation of Chinese Steamed Bread.

IF 4.2 2区 生物学 Q2 MICROBIOLOGY Journal of Fungi Pub Date : 2025-02-03 DOI:10.3390/jof11020114
Yawen Gao, Yufeng Guo, Jianing Pang, Mingkai Liu, Tengdan Yuan, Qinhong Wang, Jingsheng Liu
{"title":"Comparative Genomics and Characterisation of the Role of <i>Saccharomyces cerevisiae</i> Respiration in the Fermentation of Chinese Steamed Bread.","authors":"Yawen Gao, Yufeng Guo, Jianing Pang, Mingkai Liu, Tengdan Yuan, Qinhong Wang, Jingsheng Liu","doi":"10.3390/jof11020114","DOIUrl":null,"url":null,"abstract":"<p><p>The genetic composition of <i>Saccharomyces cerevisiae</i> and its various phenotypes during fermentation significantly correlate to the quality of Chinese steamed bread (CSB). However, the systematic correlation between different <i>S. cerevisiae</i> and CSB has not been fully elucidated. Herein, we characterised CSBs prepared with 36 isolates of <i>S. cerevisiae</i> (designated S1-S36) to comparatively evaluate their correlations. CSBs 1, 2, 13, 21, 25 and 33 exhibited suitable total titratable acidity (TTA) values, pH values and large specific volumes. Texture analysis showed that CSBs 1, 25 and 33 exhibited higher springiness and cohesiveness values. CSBs 8, 25 and 33 exhibited low hardness, gumminess and chewiness values. At the micro level, CSBs 1, 25 and 33 showed a loose reticular structure with large holes and in which starch particles wrapped into gluten protein. Fifty-nine volatile flavour compounds belonging to six categories were determined in 10 selected CSBs, and CSBs 1, 25 and 33 contained more flavour and balanced substance categories. In addition, comparative genomic analysis revealed 33 non-synonymous mutations in the three strains with strong fermentation ability (S1, S25 and S33) and the three strains with weak fermentation ability (S18, S20 and S35) involving 19 genes, including: the respiration-related genes <i>COS5</i>, <i>COS8</i> and <i>COX10</i>; the starch metabolism transcription factor <i>MSS11</i>; the general transcription factor <i>SPT8</i>; the cell aggregation-related gene <i>FLO1</i> and the transporter gene <i>SEO1</i>. Other genes with different genotypes were also enriched in respiration-related gene ontology terms. These data offer preliminary experimental evidence regarding the application of <i>S. cerevisiae</i> S1, S25 and S33 in fermented foods derived from grains.</p>","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":"11 2","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11856702/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fungi","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/jof11020114","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The genetic composition of Saccharomyces cerevisiae and its various phenotypes during fermentation significantly correlate to the quality of Chinese steamed bread (CSB). However, the systematic correlation between different S. cerevisiae and CSB has not been fully elucidated. Herein, we characterised CSBs prepared with 36 isolates of S. cerevisiae (designated S1-S36) to comparatively evaluate their correlations. CSBs 1, 2, 13, 21, 25 and 33 exhibited suitable total titratable acidity (TTA) values, pH values and large specific volumes. Texture analysis showed that CSBs 1, 25 and 33 exhibited higher springiness and cohesiveness values. CSBs 8, 25 and 33 exhibited low hardness, gumminess and chewiness values. At the micro level, CSBs 1, 25 and 33 showed a loose reticular structure with large holes and in which starch particles wrapped into gluten protein. Fifty-nine volatile flavour compounds belonging to six categories were determined in 10 selected CSBs, and CSBs 1, 25 and 33 contained more flavour and balanced substance categories. In addition, comparative genomic analysis revealed 33 non-synonymous mutations in the three strains with strong fermentation ability (S1, S25 and S33) and the three strains with weak fermentation ability (S18, S20 and S35) involving 19 genes, including: the respiration-related genes COS5, COS8 and COX10; the starch metabolism transcription factor MSS11; the general transcription factor SPT8; the cell aggregation-related gene FLO1 and the transporter gene SEO1. Other genes with different genotypes were also enriched in respiration-related gene ontology terms. These data offer preliminary experimental evidence regarding the application of S. cerevisiae S1, S25 and S33 in fermented foods derived from grains.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Fungi
Journal of Fungi Medicine-Microbiology (medical)
CiteScore
6.70
自引率
14.90%
发文量
1151
审稿时长
11 weeks
期刊介绍: Journal of Fungi (ISSN 2309-608X) is an international, peer-reviewed scientific open access journal that provides an advanced forum for studies related to pathogenic fungi, fungal biology, and all other aspects of fungal research. The journal publishes reviews, regular research papers, and communications in quarterly issues. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on paper length. Full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Correction: Ellsworth, M.; Ostrosky-Zeichner, L. Isavuconazole: Mechanism of Action, Clinical Efficacy, and Resistance. J. Fungi 2020, 6, 324. Outcome Analysis of Breakthrough Invasive Aspergillosis on Anti-Mold Azole Prophylaxis and Treatment: 30-Year Experience in Hematologic Malignancy Patients. Screening of Antagonistic Trichoderma Strains to Enhance Soybean Growth. Antifungal Policy and Practice Across Five Countries: A Qualitative Review. Haplotype-Phased Chromosome-Level Genome Assembly of Cryptoporus qinlingensis, a Typical Traditional Chinese Medicine Fungus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1