Shijia Ye, Boyu Chen, Lakshmi Jeevithan, Haoze Yang, Yaqi Kong, Xiaozhen Diao, Wenhui Wu
{"title":"Recombinant Humanized Collagen Enhances Secreted Protein Levels of Fibroblasts and Facilitates Rats' Skin Basement Membrane Reinforcement.","authors":"Shijia Ye, Boyu Chen, Lakshmi Jeevithan, Haoze Yang, Yaqi Kong, Xiaozhen Diao, Wenhui Wu","doi":"10.3390/jfb16020047","DOIUrl":null,"url":null,"abstract":"<p><p>Collagen and its peptides exhibit remarkable antioxidant activity, superior biocompatibility, and water solubility, making them a significant research focus in skin care. Hence, the recombinant humanized collagen types I, III, and XVII complexed with niacinamide were developed to address damage in human foreskin fibroblasts (HFF-1) caused by ultraviolet radiation and to evaluate basement membrane proteins in a rat skin model. The Cell Counting Kit-8 (CCK-8) assay showed that higher concentrations of the complex increased the survival of damaged cells by approximately 10% and 22%, respectively, compared to the normal group after 16 and 48 h of treatment. Further biochemical analyses using ELISA and immunofluorescence (IF) confirmed that the complex enhanced the expression of collagen type IV, laminin, P63, and transforming growth factor-β (TGF-β) in the damaged cells. Additionally, the complex boosted the activity of the basement membrane in rat skin and stimulated the secretion of integrin, laminin, and perlecan. Overall, the recombinant humanized collagen complex effectively reinforced the skin's basement membrane.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 2","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16020047","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Collagen and its peptides exhibit remarkable antioxidant activity, superior biocompatibility, and water solubility, making them a significant research focus in skin care. Hence, the recombinant humanized collagen types I, III, and XVII complexed with niacinamide were developed to address damage in human foreskin fibroblasts (HFF-1) caused by ultraviolet radiation and to evaluate basement membrane proteins in a rat skin model. The Cell Counting Kit-8 (CCK-8) assay showed that higher concentrations of the complex increased the survival of damaged cells by approximately 10% and 22%, respectively, compared to the normal group after 16 and 48 h of treatment. Further biochemical analyses using ELISA and immunofluorescence (IF) confirmed that the complex enhanced the expression of collagen type IV, laminin, P63, and transforming growth factor-β (TGF-β) in the damaged cells. Additionally, the complex boosted the activity of the basement membrane in rat skin and stimulated the secretion of integrin, laminin, and perlecan. Overall, the recombinant humanized collagen complex effectively reinforced the skin's basement membrane.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.