Agata Szczesio-Wlodarczyk, Karolina Kopacz, Katarzyna Ranoszek-Soliwoda, Jerzy Sokolowski, Kinga Bociong
{"title":"Towards the Standardization of Artificial Aging Protocols for Dental Composites: Evaluation of Proposed Methods.","authors":"Agata Szczesio-Wlodarczyk, Karolina Kopacz, Katarzyna Ranoszek-Soliwoda, Jerzy Sokolowski, Kinga Bociong","doi":"10.3390/jfb16020049","DOIUrl":null,"url":null,"abstract":"<p><p>In restorative dentistry, there are no standardized in vitro accelerated aging methods to evaluate the long-term stability of dental composites. Current research aimed at extending the clinical success of restorations emphasizes the need for post-aging evaluation. This study represents the final stage of assessing three selected aging protocols that utilize a 0.1 M sodium hydroxide solution as the primary agent to accelerate degradation processes. Twelve resin-based composites, categorized into five types, were evaluated for flexural strength (FS), diametral tensile strength (DTS), hardness (HV), and fracture toughness (FT) both before and after aging. The proposed aging methods significantly degraded the mechanical properties of most materials, highlighting the effectiveness of 0.1 M NaOH as a medium for hydrolytic stability testing. Materials with a high filler content (approximately 80 wt.%) were notably prone to degradation, underscoring the importance of optimizing the filler and coupling agent. The findings suggest that incorporating thermocycling into aging protocols may enhance the development and evaluation of innovative dental composites. This work contributes to establishing a foundation for standardized aging protocols, supporting the accurate assessment of composites in vitro.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 2","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16020049","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In restorative dentistry, there are no standardized in vitro accelerated aging methods to evaluate the long-term stability of dental composites. Current research aimed at extending the clinical success of restorations emphasizes the need for post-aging evaluation. This study represents the final stage of assessing three selected aging protocols that utilize a 0.1 M sodium hydroxide solution as the primary agent to accelerate degradation processes. Twelve resin-based composites, categorized into five types, were evaluated for flexural strength (FS), diametral tensile strength (DTS), hardness (HV), and fracture toughness (FT) both before and after aging. The proposed aging methods significantly degraded the mechanical properties of most materials, highlighting the effectiveness of 0.1 M NaOH as a medium for hydrolytic stability testing. Materials with a high filler content (approximately 80 wt.%) were notably prone to degradation, underscoring the importance of optimizing the filler and coupling agent. The findings suggest that incorporating thermocycling into aging protocols may enhance the development and evaluation of innovative dental composites. This work contributes to establishing a foundation for standardized aging protocols, supporting the accurate assessment of composites in vitro.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.