Umaimah Zanif, Agnes S Lai, Jaclyn Parks, Aina Roenningen, Christopher B McLeod, Najib Ayas, Xiangtian Wang, Yan Lin, Junfeng Jim Zhang, Parveen Bhatti
{"title":"Melatonin supplementation and oxidative DNA damage repair capacity among night shift workers: a randomised placebo-controlled trial.","authors":"Umaimah Zanif, Agnes S Lai, Jaclyn Parks, Aina Roenningen, Christopher B McLeod, Najib Ayas, Xiangtian Wang, Yan Lin, Junfeng Jim Zhang, Parveen Bhatti","doi":"10.1136/oemed-2024-109824","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>A decreased ability to repair oxidative DNA damage, due to melatonin suppression, is a compelling mechanism by which night shift workers are at an increased risk of cancer. We sought to determine if melatonin supplementation would improve oxidative DNA damage repair among night shift workers.</p><p><strong>Methods: </strong>We conducted a parallel-arm randomised placebo-controlled trial of melatonin supplementation among 40 night shift workers. Supplements were consumed before engaging in day sleep over a 4-week period. All urine excreted during a representative day sleep and night work period before and during the intervention period was collected for measurement of creatinine-adjusted 8-hydroxy-2'-deoxyguanosine (8-OH-dG) as an indicator of oxidative DNA damage repair capacity, with higher concentrations indicating better repair. Linear regression models were used to analyse the association between ln-transformed 8-OH-dG concentration and intervention status during day sleep and night work.</p><p><strong>Results: </strong>The melatonin intervention was associated with a borderline statistically significant 1.8-fold increase in urinary 8-OH-dG excretion during day sleep (95% CI 1.0, 3.2, p=0.06). No statistically significant difference in 8-OH-dG excretion was observed during the subsequent night shift (melatonin vs placebo excretion ratio=0.9; 95% CI 0.6, 1.5; p=0.7).</p><p><strong>Conclusions: </strong>Our results suggest that melatonin supplementation improves oxidative DNA damage repair capacity among night shift workers. Future larger-scale trials are needed to evaluate the impact of varying doses of melatonin supplements and examine the impacts of longer-term use of melatonin supplements by night shift workers.</p>","PeriodicalId":19459,"journal":{"name":"Occupational and Environmental Medicine","volume":" ","pages":"1-6"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Occupational and Environmental Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/oemed-2024-109824","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: A decreased ability to repair oxidative DNA damage, due to melatonin suppression, is a compelling mechanism by which night shift workers are at an increased risk of cancer. We sought to determine if melatonin supplementation would improve oxidative DNA damage repair among night shift workers.
Methods: We conducted a parallel-arm randomised placebo-controlled trial of melatonin supplementation among 40 night shift workers. Supplements were consumed before engaging in day sleep over a 4-week period. All urine excreted during a representative day sleep and night work period before and during the intervention period was collected for measurement of creatinine-adjusted 8-hydroxy-2'-deoxyguanosine (8-OH-dG) as an indicator of oxidative DNA damage repair capacity, with higher concentrations indicating better repair. Linear regression models were used to analyse the association between ln-transformed 8-OH-dG concentration and intervention status during day sleep and night work.
Results: The melatonin intervention was associated with a borderline statistically significant 1.8-fold increase in urinary 8-OH-dG excretion during day sleep (95% CI 1.0, 3.2, p=0.06). No statistically significant difference in 8-OH-dG excretion was observed during the subsequent night shift (melatonin vs placebo excretion ratio=0.9; 95% CI 0.6, 1.5; p=0.7).
Conclusions: Our results suggest that melatonin supplementation improves oxidative DNA damage repair capacity among night shift workers. Future larger-scale trials are needed to evaluate the impact of varying doses of melatonin supplements and examine the impacts of longer-term use of melatonin supplements by night shift workers.
期刊介绍:
Occupational and Environmental Medicine is an international peer reviewed journal covering current developments in occupational and environmental health worldwide. Occupational and Environmental Medicine publishes high-quality research relating to the full range of chemical, physical, ergonomic, biological and psychosocial hazards in the workplace and to environmental contaminants and their health effects. The journal welcomes research aimed at improving the evidence-based practice of occupational and environmental research; including the development and application of novel biological and statistical techniques in addition to evaluation of interventions in controlling occupational and environmental risks.