Phytonutrients as a Defensive Barrier Against G Ectodomain Fusion in Chandipura Virus Infection.

IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Biotechnology Pub Date : 2025-02-25 DOI:10.1007/s12033-025-01384-x
Jyoti Kumari Yadav, Mohammadfesal Ghanchi, Nandan Dixit, Gaurang Sindhav, Saumya Patel, Rakesh Rawal
{"title":"Phytonutrients as a Defensive Barrier Against G Ectodomain Fusion in Chandipura Virus Infection.","authors":"Jyoti Kumari Yadav, Mohammadfesal Ghanchi, Nandan Dixit, Gaurang Sindhav, Saumya Patel, Rakesh Rawal","doi":"10.1007/s12033-025-01384-x","DOIUrl":null,"url":null,"abstract":"<p><p>Viruses, microscopic menace that transcends time leaving its mark on every era have been silent predators since the dawn of civilization, evolving with us and shaping our history. Chandipura virus (CHPV), a potent member of the Rhabdoviridae family poses a significant threat in India with rapid neuroinvasive potential leading to fatal encephalitis, particularly in children. Given the scarcity of research, our study consolidates critical information regarding its lifecycle, fusion process, and reviewed the LRP1 and GRP78 as CHPV target receptors. With no FDA-approved drugs currently available for CHPV prevention, our research focuses on identifying potential molecules that can disrupt the virus at its most critical juncture, the fusion stage. The results derived from compounds screening indicated Silibinin, 3-(2,3-Dihydroxy-3-Methylbutyl)-6-Hydroxy-2-[(1E,5E)-3,4,10-Trihydroxyundeca-1,5-Dienyl] Benzaldehyde, Budmunchiamine L5, and L4 as a leading molecule may efficaciously inhibit G ectodomain fusion. By analyzing pharmacokinetic properties through radar graph, outcomes support the nomination of four compounds as potential inhibitory molecules and ensure they possess the optimal balance of drug-like characteristics. Working with the CHPV presents significant challenges, making the in silico parameters crucial in guiding future research. Our study sought to pioneer the discovery of therapeutic molecules against the CHPV, providing a foundational framework for developing effective antiviral strategies.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-025-01384-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Viruses, microscopic menace that transcends time leaving its mark on every era have been silent predators since the dawn of civilization, evolving with us and shaping our history. Chandipura virus (CHPV), a potent member of the Rhabdoviridae family poses a significant threat in India with rapid neuroinvasive potential leading to fatal encephalitis, particularly in children. Given the scarcity of research, our study consolidates critical information regarding its lifecycle, fusion process, and reviewed the LRP1 and GRP78 as CHPV target receptors. With no FDA-approved drugs currently available for CHPV prevention, our research focuses on identifying potential molecules that can disrupt the virus at its most critical juncture, the fusion stage. The results derived from compounds screening indicated Silibinin, 3-(2,3-Dihydroxy-3-Methylbutyl)-6-Hydroxy-2-[(1E,5E)-3,4,10-Trihydroxyundeca-1,5-Dienyl] Benzaldehyde, Budmunchiamine L5, and L4 as a leading molecule may efficaciously inhibit G ectodomain fusion. By analyzing pharmacokinetic properties through radar graph, outcomes support the nomination of four compounds as potential inhibitory molecules and ensure they possess the optimal balance of drug-like characteristics. Working with the CHPV presents significant challenges, making the in silico parameters crucial in guiding future research. Our study sought to pioneer the discovery of therapeutic molecules against the CHPV, providing a foundational framework for developing effective antiviral strategies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Biotechnology
Molecular Biotechnology 医学-生化与分子生物学
CiteScore
4.10
自引率
3.80%
发文量
165
审稿时长
6 months
期刊介绍: Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.
期刊最新文献
Expression of Serum Inflammatory Factors in Patients with Acute Ischemic Stroke Complicated with Type 2 Diabetes Mellitus and Its Relationship with the Formation and Stability of Carotid Atherosclerotic Plaque. DNA Barcoding of Invasive Terrestrial Plant Species in India. YB-1 Targeted by miR-509-3-5p Affects Migration and Invasion of Triple‑Negative Breast Cancer by Regulating Cellular Epithelial‑Mesenchymal Transition. Heterologous Expression of Phycocyanobilin in Escherichia coli and Determination of Its Antioxidant Capacity In Vitro. The Up-Regulated Expression of Mitochondrial Membrane Molecule RHOT1 in Gastric Cancer Predicts the Prognosis of Patients and Promotes the Malignant Biological Behavior of Cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1