Man Wang, Guimin Jin, Tingting Duan, Run Li, Yubin Gao, Ming Yu, Yuhao Xu
{"title":"Microglial Phagocytosis and Regulatory Mechanisms: Key Players in the Pathophysiology of Depression.","authors":"Man Wang, Guimin Jin, Tingting Duan, Run Li, Yubin Gao, Ming Yu, Yuhao Xu","doi":"10.1016/j.neuropharm.2025.110383","DOIUrl":null,"url":null,"abstract":"<p><p>Depression is a globally prevalent emotional disorder with a complex pathophysiology. Microglia are resident immune cells in the central nervous system, playing crucial roles in regulating inflammation, synaptic plasticity, immune phagocytosis, and other functions, thereby exerting significant impacts on neuropsychiatric disorders like depression. Increasing research indicates that abnormal phagocytic function of microglia in the brain is involved in depression, showing excessive or insufficient phagocytosis in different states. Here, we have provided a review of the signaling molecules involved in microglial phagocytosis in depression, including \"eat me\" signals such as phosphatidylserine (PS), complement, and \"don't eat me\" signals such as CD47, CD200 and related receptors. Furthermore, we discuss the regulatory effects of existing pharmaceuticals and dietary nutrients on microglial phagocytosis in depression, emphasizing the need for tailored modulation based on the varying phagocytic states of microglia. This review aims to facilitate a deeper understanding of the role of microglial phagocytosis in depression and provide a roadmap for potential therapeutic strategies for depression targeting microglial phagocytosis.</p>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":" ","pages":"110383"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuropharm.2025.110383","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Depression is a globally prevalent emotional disorder with a complex pathophysiology. Microglia are resident immune cells in the central nervous system, playing crucial roles in regulating inflammation, synaptic plasticity, immune phagocytosis, and other functions, thereby exerting significant impacts on neuropsychiatric disorders like depression. Increasing research indicates that abnormal phagocytic function of microglia in the brain is involved in depression, showing excessive or insufficient phagocytosis in different states. Here, we have provided a review of the signaling molecules involved in microglial phagocytosis in depression, including "eat me" signals such as phosphatidylserine (PS), complement, and "don't eat me" signals such as CD47, CD200 and related receptors. Furthermore, we discuss the regulatory effects of existing pharmaceuticals and dietary nutrients on microglial phagocytosis in depression, emphasizing the need for tailored modulation based on the varying phagocytic states of microglia. This review aims to facilitate a deeper understanding of the role of microglial phagocytosis in depression and provide a roadmap for potential therapeutic strategies for depression targeting microglial phagocytosis.
期刊介绍:
Neuropharmacology publishes high quality, original research and review articles within the discipline of neuroscience, especially articles with a neuropharmacological component. However, papers within any area of neuroscience will be considered. The journal does not usually accept clinical research, although preclinical neuropharmacological studies in humans may be considered. The journal only considers submissions in which the chemical structures and compositions of experimental agents are readily available in the literature or disclosed by the authors in the submitted manuscript. Only in exceptional circumstances will natural products be considered, and then only if the preparation is well defined by scientific means. Neuropharmacology publishes articles of any length (original research and reviews).