Neal A Jha, Samantha M Ayoub, M Melissa Flesher, Kathleen Morton, Megan Sikkink, Giordano de Guglielmo, Jibran Y Khokhar, Arpi Minassian, Arthur L Brody, Jared W Young
{"title":"Acute nicotine vapor attenuates sensorimotor gating deficits in HIV-1 transgenic rats.","authors":"Neal A Jha, Samantha M Ayoub, M Melissa Flesher, Kathleen Morton, Megan Sikkink, Giordano de Guglielmo, Jibran Y Khokhar, Arpi Minassian, Arthur L Brody, Jared W Young","doi":"10.1007/s00213-025-06761-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Rationale: </strong>Despite improved life expectancy of people with HIV (PWH), HIV-associated neurocognitive impairment (NCI) persists, alongside deficits in sensorimotor gating and neuroinflammation. PWH exhibit high smoking rates, possibly due to neuroprotective, anti-inflammatory, and cognitive-enhancing effects of nicotine, suggesting potential self-medication.</p><p><strong>Objectives: </strong>Here, we tested the effects of acute nicotine vapor exposure on translatable measures of sensorimotor gating and exploratory behavior in the HIV-1 transgenic (HIV-1Tg) rat model of HIV.</p><p><strong>Methods: </strong>Male and female HIV-1Tg (n = 28) and F344 control rats (n = 29) were exposed to acute nicotine or vehicle vapor. Sensorimotor gating was assessed using prepulse inhibition (PPI) of the acoustic startle response, and exploratory behavior was evaluated using the behavioral pattern monitor (BPM).</p><p><strong>Results: </strong>Vehicle-treated HIV-1Tg rats exhibited PPI deficits at low prepulse intensities compared to F344 controls, as seen previously. No PPI deficits were observed in nicotine-treated HIV-1Tg rats, however. Nicotine vapor increased locomotor activity across genotypes. Cotinine analyses confirmed comparable levels of the primary metabolite of nicotine across genotypes.</p><p><strong>Conclusions: </strong>Previous findings of PPI deficits in HIV-1Tg rats were replicated and, importantly, attenuated by acute nicotine vapor administration. Evidence for similar cotinine levels suggest a nicotine-specific effect in HIV-1Tg rats. Therefore, acute nicotine administration may be beneficial for attenuating sensorimotor deficits in PWH. Future studies should determine the long-term effects of nicotine vapor on similar HIV/NCI-relevant behaviors.</p>","PeriodicalId":20783,"journal":{"name":"Psychopharmacology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00213-025-06761-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Rationale: Despite improved life expectancy of people with HIV (PWH), HIV-associated neurocognitive impairment (NCI) persists, alongside deficits in sensorimotor gating and neuroinflammation. PWH exhibit high smoking rates, possibly due to neuroprotective, anti-inflammatory, and cognitive-enhancing effects of nicotine, suggesting potential self-medication.
Objectives: Here, we tested the effects of acute nicotine vapor exposure on translatable measures of sensorimotor gating and exploratory behavior in the HIV-1 transgenic (HIV-1Tg) rat model of HIV.
Methods: Male and female HIV-1Tg (n = 28) and F344 control rats (n = 29) were exposed to acute nicotine or vehicle vapor. Sensorimotor gating was assessed using prepulse inhibition (PPI) of the acoustic startle response, and exploratory behavior was evaluated using the behavioral pattern monitor (BPM).
Results: Vehicle-treated HIV-1Tg rats exhibited PPI deficits at low prepulse intensities compared to F344 controls, as seen previously. No PPI deficits were observed in nicotine-treated HIV-1Tg rats, however. Nicotine vapor increased locomotor activity across genotypes. Cotinine analyses confirmed comparable levels of the primary metabolite of nicotine across genotypes.
Conclusions: Previous findings of PPI deficits in HIV-1Tg rats were replicated and, importantly, attenuated by acute nicotine vapor administration. Evidence for similar cotinine levels suggest a nicotine-specific effect in HIV-1Tg rats. Therefore, acute nicotine administration may be beneficial for attenuating sensorimotor deficits in PWH. Future studies should determine the long-term effects of nicotine vapor on similar HIV/NCI-relevant behaviors.
期刊介绍:
Official Journal of the European Behavioural Pharmacology Society (EBPS)
Psychopharmacology is an international journal that covers the broad topic of elucidating mechanisms by which drugs affect behavior. The scope of the journal encompasses the following fields:
Human Psychopharmacology: Experimental
This section includes manuscripts describing the effects of drugs on mood, behavior, cognition and physiology in humans. The journal encourages submissions that involve brain imaging, genetics, neuroendocrinology, and developmental topics. Usually manuscripts in this section describe studies conducted under controlled conditions, but occasionally descriptive or observational studies are also considered.
Human Psychopharmacology: Clinical and Translational
This section comprises studies addressing the broad intersection of drugs and psychiatric illness. This includes not only clinical trials and studies of drug usage and metabolism, drug surveillance, and pharmacoepidemiology, but also work utilizing the entire range of clinically relevant methodologies, including neuroimaging, pharmacogenetics, cognitive science, biomarkers, and others. Work directed toward the translation of preclinical to clinical knowledge is especially encouraged. The key feature of submissions to this section is that they involve a focus on clinical aspects.
Preclinical psychopharmacology: Behavioral and Neural
This section considers reports on the effects of compounds with defined chemical structures on any aspect of behavior, in particular when correlated with neurochemical effects, in species other than humans. Manuscripts containing neuroscientific techniques in combination with behavior are welcome. We encourage reports of studies that provide insight into the mechanisms of drug action, at the behavioral and molecular levels.
Preclinical Psychopharmacology: Translational
This section considers manuscripts that enhance the confidence in a central mechanism that could be of therapeutic value for psychiatric or neurological patients, using disease-relevant preclinical models and tests, or that report on preclinical manipulations and challenges that have the potential to be translated to the clinic. Studies aiming at the refinement of preclinical models based upon clinical findings (back-translation) will also be considered. The journal particularly encourages submissions that integrate measures of target tissue exposure, activity on the molecular target and/or modulation of the targeted biochemical pathways.
Preclinical Psychopharmacology: Molecular, Genetic and Epigenetic
This section focuses on the molecular and cellular actions of neuropharmacological agents / drugs, and the identification / validation of drug targets affecting the CNS in health and disease. We particularly encourage studies that provide insight into the mechanisms of drug action at the molecular level. Manuscripts containing evidence for genetic or epigenetic effects on neurochemistry or behavior are welcome.