Gradient-Based Radiomics for Outcome Prediction and Decision-Making in PULSAR: A Preliminary Study.

IF 2.1 Q3 ONCOLOGY International Journal of Particle Therapy Pub Date : 2025-02-03 eCollection Date: 2025-03-01 DOI:10.1016/j.ijpt.2025.100739
Haozhao Zhang, Jiaqi Liu, Michael Dohopolski, Zabi Wardak, Robert Timmerman, Hao Peng
{"title":"Gradient-Based Radiomics for Outcome Prediction and Decision-Making in PULSAR: A Preliminary Study.","authors":"Haozhao Zhang, Jiaqi Liu, Michael Dohopolski, Zabi Wardak, Robert Timmerman, Hao Peng","doi":"10.1016/j.ijpt.2025.100739","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Personalized ultrafractionated stereotactic adaptive radiation therapy (PULSAR) has emerged as an innovative method for delivering high-dose radiation over extended intervals, adapting treatment based on the patient's response. However, current adaptation largely relies on physicians' experience and tumor size assessment, underscoring the need for a data-driven approach to improve outcome prediction and support decision-making.</p><p><strong>Materials and methods: </strong>We analyzed 69 lesions from 39 patients undergoing PULSAR treatment. Gradient-based features, including gradient magnitude, radial gradient, and radial deviation, were extracted from both intratumoral and peritumoral regions, with the latter further divided into octant subregions. Support vector machine models were developed using features from first magnetic resonance imaging (MRI), second MRI, and delta mode (change between the 2). An ensemble feature selection (EFS) model was then created by combining the features of the top-performing individual models. The approach was validated on a non-PULSAR cohort (37 lesions from 23 patients) treated with standard fractionated stereotactic radiation therapy.</p><p><strong>Results: </strong>The EFS model shows strong predictive performance in determining whether tumor volume reduction exceeds 20% at the 3-month postradiation time point. Features derived from octant subregions exhibit significantly better prediction than those from the core or entire margin. Pretreatment features (from first MRI) generally outperform second MRI and delta-mode features, while the inclusion of 1 delta feature in the EFS model enhances performance. In the non-PULSAR cohort, the gradient-based approach outperforms conventional radiomics, demonstrating its strong generalizability.</p><p><strong>Conclusion: </strong>Our gradient-based radiomics approach, combining spatial segmentation and temporal features, significantly enhances treatment response prediction in PULSAR therapy. Its superior performance compared to conventional radiomics, coupled with its effectiveness in both PULSAR and non-PULSAR cohorts, highlights its potential as a robust tool for personalized treatment planning in neuro-oncology, applicable to both photon and particle therapies.</p>","PeriodicalId":36923,"journal":{"name":"International Journal of Particle Therapy","volume":"15 ","pages":"100739"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11848104/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Particle Therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.ijpt.2025.100739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Personalized ultrafractionated stereotactic adaptive radiation therapy (PULSAR) has emerged as an innovative method for delivering high-dose radiation over extended intervals, adapting treatment based on the patient's response. However, current adaptation largely relies on physicians' experience and tumor size assessment, underscoring the need for a data-driven approach to improve outcome prediction and support decision-making.

Materials and methods: We analyzed 69 lesions from 39 patients undergoing PULSAR treatment. Gradient-based features, including gradient magnitude, radial gradient, and radial deviation, were extracted from both intratumoral and peritumoral regions, with the latter further divided into octant subregions. Support vector machine models were developed using features from first magnetic resonance imaging (MRI), second MRI, and delta mode (change between the 2). An ensemble feature selection (EFS) model was then created by combining the features of the top-performing individual models. The approach was validated on a non-PULSAR cohort (37 lesions from 23 patients) treated with standard fractionated stereotactic radiation therapy.

Results: The EFS model shows strong predictive performance in determining whether tumor volume reduction exceeds 20% at the 3-month postradiation time point. Features derived from octant subregions exhibit significantly better prediction than those from the core or entire margin. Pretreatment features (from first MRI) generally outperform second MRI and delta-mode features, while the inclusion of 1 delta feature in the EFS model enhances performance. In the non-PULSAR cohort, the gradient-based approach outperforms conventional radiomics, demonstrating its strong generalizability.

Conclusion: Our gradient-based radiomics approach, combining spatial segmentation and temporal features, significantly enhances treatment response prediction in PULSAR therapy. Its superior performance compared to conventional radiomics, coupled with its effectiveness in both PULSAR and non-PULSAR cohorts, highlights its potential as a robust tool for personalized treatment planning in neuro-oncology, applicable to both photon and particle therapies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于梯度的放射组学用于 PULSAR 的结果预测和决策制定:初步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Particle Therapy
International Journal of Particle Therapy Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
3.70
自引率
5.90%
发文量
23
审稿时长
20 weeks
期刊最新文献
Gradient-Based Radiomics for Outcome Prediction and Decision-Making in PULSAR: A Preliminary Study. Carbon-Ion Radiotherapy for Head and Neck Mucosal Melanoma: Preliminary Clinical Outcomes and the MedAustron Approach for Reporting RBE-Weighted Dose With 2 Models. Radioresistant, Rare, Recurrent, and Radioinduced: 4Rs of Hadrontherapy for Patients Selections. Proton Beam Therapy for a Rare Anaplastic Pleomorphic Xanthoastrocytoma: Case Report and Literature Review. Accuracy Evaluation of Dose Warping Using Deformable Image Registration in Carbon Ion Therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1