Quercetin and Catechin Protects Leptin-Deficient Lepob/Ob Mice Against Alloxan-Induced Diabetes and Hepatotoxicity via Suppression of Oxidative Stress and Inflammation.
Mahdieh Sadat Badiee, Ali Vadizadeh, Maryam Salehcheh, Mehrnoosh Moosavi, Maryam Shirani, Fereshtesadat Fakhredini, Mohammad Javad Khodayar
{"title":"Quercetin and Catechin Protects Leptin-Deficient Lep<sup>ob/Ob</sup> Mice Against Alloxan-Induced Diabetes and Hepatotoxicity via Suppression of Oxidative Stress and Inflammation.","authors":"Mahdieh Sadat Badiee, Ali Vadizadeh, Maryam Salehcheh, Mehrnoosh Moosavi, Maryam Shirani, Fereshtesadat Fakhredini, Mohammad Javad Khodayar","doi":"10.61186/rbmb.13.2.184","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The study focuses on evaluating the combined effects of quercetin (QCT) and catechin (CAT), both plant-based antioxidants, on alloxan-induced liver toxicity and diabetes in leptin-deficient (Lep<sup>ob/ob</sup>) mice. Diabetes is a metabolic disorder characterized by high blood glucose levels due to inadequate insulin secretion or insulin resistance.</p><p><strong>Methods: </strong>Thirty mice were divided into five groups of 6, including: normal control, diabetic control, diabetic mice treated with 150 mg/kg CAT, diabetic mice treated with 150 mg/kg QCT, and diabetic mice treated with 150 mg/kg CAT, and 150 mg/kg QCT for seven days. Mice were anesthetized after overnight fasting on the 8th day, and the blood sample was collected and the levels of antioxidants and pro-inflammatory factors in serum, and the expression of ADP-ribose polymerase (PARP) protein were measured, and histological studies were performed.</p><p><strong>Results: </strong>The results showed that diabetic mice receiving QCT and CAT showed lower liver enzymes, fasting blood sugar (FBS), blood urea nitrogen (BUN), creatinine (Cr), cholesterol, triglyceride, low-density lipoprotein (LDL), TNF-α, and thiobarbituric acid reactive substances (TBARS) levels and increased high-density lipoprotein (HDL), total thiol, catalase, superoxide dismutase (SOD), and glutathione peroxidase (GPx) levels in the liver compared to the ALLO group alone (P<0.001). The level of PARP protein significantly declined in the ALLO group compared to the control group.</p><p><strong>Conclusions: </strong>The findings of this study demonstrated that QCT, and CAT are reasonably effective in preventing hepatotoxicity and diabetes in mice.</p>","PeriodicalId":45319,"journal":{"name":"Reports of Biochemistry and Molecular Biology","volume":"13 2","pages":"184-195"},"PeriodicalIF":1.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11847592/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports of Biochemistry and Molecular Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.61186/rbmb.13.2.184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The study focuses on evaluating the combined effects of quercetin (QCT) and catechin (CAT), both plant-based antioxidants, on alloxan-induced liver toxicity and diabetes in leptin-deficient (Lepob/ob) mice. Diabetes is a metabolic disorder characterized by high blood glucose levels due to inadequate insulin secretion or insulin resistance.
Methods: Thirty mice were divided into five groups of 6, including: normal control, diabetic control, diabetic mice treated with 150 mg/kg CAT, diabetic mice treated with 150 mg/kg QCT, and diabetic mice treated with 150 mg/kg CAT, and 150 mg/kg QCT for seven days. Mice were anesthetized after overnight fasting on the 8th day, and the blood sample was collected and the levels of antioxidants and pro-inflammatory factors in serum, and the expression of ADP-ribose polymerase (PARP) protein were measured, and histological studies were performed.
Results: The results showed that diabetic mice receiving QCT and CAT showed lower liver enzymes, fasting blood sugar (FBS), blood urea nitrogen (BUN), creatinine (Cr), cholesterol, triglyceride, low-density lipoprotein (LDL), TNF-α, and thiobarbituric acid reactive substances (TBARS) levels and increased high-density lipoprotein (HDL), total thiol, catalase, superoxide dismutase (SOD), and glutathione peroxidase (GPx) levels in the liver compared to the ALLO group alone (P<0.001). The level of PARP protein significantly declined in the ALLO group compared to the control group.
Conclusions: The findings of this study demonstrated that QCT, and CAT are reasonably effective in preventing hepatotoxicity and diabetes in mice.
期刊介绍:
The Reports of Biochemistry & Molecular Biology (RBMB) is the official journal of the Varastegan Institute for Medical Sciences and is dedicated to furthering international exchange of medical and biomedical science experience and opinion and a platform for worldwide dissemination. The RBMB is a medical journal that gives special emphasis to biochemical research and molecular biology studies. The Journal invites original and review articles, short communications, reports on experiments and clinical cases, and case reports containing new insights into any aspect of biochemistry and molecular biology that are not published or being considered for publication elsewhere. Publications are accepted in the form of reports of original research, brief communications, case reports, structured reviews, editorials, commentaries, views and perspectives, letters to authors, book reviews, resources, news, and event agenda.