A PET/CT-based 3D deep learning model for predicting spread through air spaces in stage I lung adenocarcinoma.

IF 2.8 3区 医学 Q2 ONCOLOGY Clinical & Translational Oncology Pub Date : 2025-02-24 DOI:10.1007/s12094-025-03870-9
Cheng Zheng, Yujie Cai, Jiangfeng Miao, BingShu Zheng, Yan Gao, Chen Shen, ShanLei Bao, ZhongHua Tan, ChunFeng Sun
{"title":"A PET/CT-based 3D deep learning model for predicting spread through air spaces in stage I lung adenocarcinoma.","authors":"Cheng Zheng, Yujie Cai, Jiangfeng Miao, BingShu Zheng, Yan Gao, Chen Shen, ShanLei Bao, ZhongHua Tan, ChunFeng Sun","doi":"10.1007/s12094-025-03870-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study evaluates a three-dimensional (3D) deep learning (DL) model based on fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) for predicting the preoperative status of spread through air spaces (STAS) in patients with clinical stage I lung adenocarcinoma (LUAD).</p><p><strong>Methods: </strong>A retrospective analysis of 162 patients with stage I LUAD was conducted, splitting data into training and test sets (4:1). Six 3D DL models were developed, and the top-performing PET and CT models (ResNet50) were fused for optimal prediction. The model's clinical utility was assessed through a two-stage reader study.</p><p><strong>Results: </strong>The fused PET/CT model achieved an area under the curve (AUC) of 0.956 (95% CI 0.9230-0.9881) in the training set and 0.889 (95% CI 0.7624-1.0000) in the test set. Compared to three physicians, the model demonstrated superior sensitivity and specificity. After the artificial intelligence (AI) assistance's participation, the diagnostic accuracy of the physicians improved during their subsequent reading session.</p><p><strong>Conclusion: </strong>Our DL model demonstrates potential as a resource to aid physicians in predicting STAS status and preoperative treatment planning for stage I LUAD, though prospective validation is required.</p>","PeriodicalId":50685,"journal":{"name":"Clinical & Translational Oncology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical & Translational Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12094-025-03870-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: This study evaluates a three-dimensional (3D) deep learning (DL) model based on fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) for predicting the preoperative status of spread through air spaces (STAS) in patients with clinical stage I lung adenocarcinoma (LUAD).

Methods: A retrospective analysis of 162 patients with stage I LUAD was conducted, splitting data into training and test sets (4:1). Six 3D DL models were developed, and the top-performing PET and CT models (ResNet50) were fused for optimal prediction. The model's clinical utility was assessed through a two-stage reader study.

Results: The fused PET/CT model achieved an area under the curve (AUC) of 0.956 (95% CI 0.9230-0.9881) in the training set and 0.889 (95% CI 0.7624-1.0000) in the test set. Compared to three physicians, the model demonstrated superior sensitivity and specificity. After the artificial intelligence (AI) assistance's participation, the diagnostic accuracy of the physicians improved during their subsequent reading session.

Conclusion: Our DL model demonstrates potential as a resource to aid physicians in predicting STAS status and preoperative treatment planning for stage I LUAD, though prospective validation is required.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.20
自引率
2.90%
发文量
240
审稿时长
1 months
期刊介绍: Clinical and Translational Oncology is an international journal devoted to fostering interaction between experimental and clinical oncology. It covers all aspects of research on cancer, from the more basic discoveries dealing with both cell and molecular biology of tumour cells, to the most advanced clinical assays of conventional and new drugs. In addition, the journal has a strong commitment to facilitating the transfer of knowledge from the basic laboratory to the clinical practice, with the publication of educational series devoted to closing the gap between molecular and clinical oncologists. Molecular biology of tumours, identification of new targets for cancer therapy, and new technologies for research and treatment of cancer are the major themes covered by the educational series. Full research articles on a broad spectrum of subjects, including the molecular and cellular bases of disease, aetiology, pathophysiology, pathology, epidemiology, clinical features, and the diagnosis, prognosis and treatment of cancer, will be considered for publication.
期刊最新文献
Patterns of failure after stereotactic body radiotherapy to non-spine bone metastases. 2025 Updated version v1.0 SEOM-GEMCAD-TTD clinical guidelines for the systemic treatment of metastatic colorectal cancer (2022). Management and outcome of children with high-risk neuroblastoma: insights from the Spanish Society of Pediatric Hematology and Oncology (SEHOP) neuroblastoma group on refractory and relapse/progressive disease. A PET/CT-based 3D deep learning model for predicting spread through air spaces in stage I lung adenocarcinoma. Cabazitaxel versus abiraterone or enzalutamide for metastatic castration-resistant prostate cancer following docetaxel failure: a systematic review and meta-analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1