Cheng Zheng, Yujie Cai, Jiangfeng Miao, BingShu Zheng, Yan Gao, Chen Shen, ShanLei Bao, ZhongHua Tan, ChunFeng Sun
{"title":"A PET/CT-based 3D deep learning model for predicting spread through air spaces in stage I lung adenocarcinoma.","authors":"Cheng Zheng, Yujie Cai, Jiangfeng Miao, BingShu Zheng, Yan Gao, Chen Shen, ShanLei Bao, ZhongHua Tan, ChunFeng Sun","doi":"10.1007/s12094-025-03870-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study evaluates a three-dimensional (3D) deep learning (DL) model based on fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) for predicting the preoperative status of spread through air spaces (STAS) in patients with clinical stage I lung adenocarcinoma (LUAD).</p><p><strong>Methods: </strong>A retrospective analysis of 162 patients with stage I LUAD was conducted, splitting data into training and test sets (4:1). Six 3D DL models were developed, and the top-performing PET and CT models (ResNet50) were fused for optimal prediction. The model's clinical utility was assessed through a two-stage reader study.</p><p><strong>Results: </strong>The fused PET/CT model achieved an area under the curve (AUC) of 0.956 (95% CI 0.9230-0.9881) in the training set and 0.889 (95% CI 0.7624-1.0000) in the test set. Compared to three physicians, the model demonstrated superior sensitivity and specificity. After the artificial intelligence (AI) assistance's participation, the diagnostic accuracy of the physicians improved during their subsequent reading session.</p><p><strong>Conclusion: </strong>Our DL model demonstrates potential as a resource to aid physicians in predicting STAS status and preoperative treatment planning for stage I LUAD, though prospective validation is required.</p>","PeriodicalId":50685,"journal":{"name":"Clinical & Translational Oncology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical & Translational Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12094-025-03870-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: This study evaluates a three-dimensional (3D) deep learning (DL) model based on fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) for predicting the preoperative status of spread through air spaces (STAS) in patients with clinical stage I lung adenocarcinoma (LUAD).
Methods: A retrospective analysis of 162 patients with stage I LUAD was conducted, splitting data into training and test sets (4:1). Six 3D DL models were developed, and the top-performing PET and CT models (ResNet50) were fused for optimal prediction. The model's clinical utility was assessed through a two-stage reader study.
Results: The fused PET/CT model achieved an area under the curve (AUC) of 0.956 (95% CI 0.9230-0.9881) in the training set and 0.889 (95% CI 0.7624-1.0000) in the test set. Compared to three physicians, the model demonstrated superior sensitivity and specificity. After the artificial intelligence (AI) assistance's participation, the diagnostic accuracy of the physicians improved during their subsequent reading session.
Conclusion: Our DL model demonstrates potential as a resource to aid physicians in predicting STAS status and preoperative treatment planning for stage I LUAD, though prospective validation is required.
期刊介绍:
Clinical and Translational Oncology is an international journal devoted to fostering interaction between experimental and clinical oncology. It covers all aspects of research on cancer, from the more basic discoveries dealing with both cell and molecular biology of tumour cells, to the most advanced clinical assays of conventional and new drugs. In addition, the journal has a strong commitment to facilitating the transfer of knowledge from the basic laboratory to the clinical practice, with the publication of educational series devoted to closing the gap between molecular and clinical oncologists. Molecular biology of tumours, identification of new targets for cancer therapy, and new technologies for research and treatment of cancer are the major themes covered by the educational series. Full research articles on a broad spectrum of subjects, including the molecular and cellular bases of disease, aetiology, pathophysiology, pathology, epidemiology, clinical features, and the diagnosis, prognosis and treatment of cancer, will be considered for publication.