In Vitro Differentiation of Endometrium Stem Cells into Cardiomyocytes: The Putative Effect of miR-17-5p, miR-26b-5p, miR-32-5p, and SMAD6.

IF 1.6 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Reports of Biochemistry and Molecular Biology Pub Date : 2024-07-01 DOI:10.61186/rbmb.13.2.243
Somayeh Saadat, Mahdi Noureddini, Behnaz Maleki, Naeim Ehtesham, Alireza Farrokhian, Javad Verdi, Ebrahim Cheraghi, Hossein Ghanbarian, Behrang Alani
{"title":"<i>In Vitro</i> Differentiation of Endometrium Stem Cells into Cardiomyocytes: The Putative Effect of miR-17-5p, miR-26b-5p, miR-32-5p, and SMAD6.","authors":"Somayeh Saadat, Mahdi Noureddini, Behnaz Maleki, Naeim Ehtesham, Alireza Farrokhian, Javad Verdi, Ebrahim Cheraghi, Hossein Ghanbarian, Behrang Alani","doi":"10.61186/rbmb.13.2.243","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The important role of SMAD6 and several microRNAs (miRNAs), such as miR-17-5p, miR-26b-5p, and miR-32-5p, has been demonstrated in controlling the proliferation and differentiation of cardiomyocytes (CMs). Hence, this study was designed to assess the role of these regulatory factors in cardiac cell generation from human endometrium-derived mesenchymal stem cells (hEMSCs).</p><p><strong>Methods: </strong>To induce transdifferentiation into CMs, hEMSCs were treated with a cardiac-inducing medium containing 5-azacytidine and bFGF for 30 days. Immunofluorescence staining and qRT-PCR, respectively, were used to measure the protein levels of SMAD6 and the mRNA expression of SMAD6 and the three miRNAs every six days.</p><p><strong>Results: </strong>Our findings demonstrated the mesenchymal stem cell properties of hEMSCs and their ability to differentiate into various types of mesenchymal stem cells. The differentiated hEMSCs exhibited morphological features resembling CMs. During the induction period, the number of positive cells for SMAD6 protein and the expression level of miR-26b-5p increased and peaking on days 24 and 30, while the expression levels of miR-17-5p and miR-32-5p decreased. The Pearson correlation coefficients revealed that SMAD6 level is inversely correlated with miR-17-5p and miR-32-5p and directly correlated with miR-26b-5p.</p><p><strong>Conclusions: </strong>Our results indicate that miR-17-5p, miR-26b-5p, miR-32-5p, and SMAD6 are potentially involved in the molecular signaling pathways of transdifferentiation of hEMSCs to CMs.</p>","PeriodicalId":45319,"journal":{"name":"Reports of Biochemistry and Molecular Biology","volume":"13 2","pages":"243-253"},"PeriodicalIF":1.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11847587/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports of Biochemistry and Molecular Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.61186/rbmb.13.2.243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The important role of SMAD6 and several microRNAs (miRNAs), such as miR-17-5p, miR-26b-5p, and miR-32-5p, has been demonstrated in controlling the proliferation and differentiation of cardiomyocytes (CMs). Hence, this study was designed to assess the role of these regulatory factors in cardiac cell generation from human endometrium-derived mesenchymal stem cells (hEMSCs).

Methods: To induce transdifferentiation into CMs, hEMSCs were treated with a cardiac-inducing medium containing 5-azacytidine and bFGF for 30 days. Immunofluorescence staining and qRT-PCR, respectively, were used to measure the protein levels of SMAD6 and the mRNA expression of SMAD6 and the three miRNAs every six days.

Results: Our findings demonstrated the mesenchymal stem cell properties of hEMSCs and their ability to differentiate into various types of mesenchymal stem cells. The differentiated hEMSCs exhibited morphological features resembling CMs. During the induction period, the number of positive cells for SMAD6 protein and the expression level of miR-26b-5p increased and peaking on days 24 and 30, while the expression levels of miR-17-5p and miR-32-5p decreased. The Pearson correlation coefficients revealed that SMAD6 level is inversely correlated with miR-17-5p and miR-32-5p and directly correlated with miR-26b-5p.

Conclusions: Our results indicate that miR-17-5p, miR-26b-5p, miR-32-5p, and SMAD6 are potentially involved in the molecular signaling pathways of transdifferentiation of hEMSCs to CMs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Reports of Biochemistry and Molecular Biology
Reports of Biochemistry and Molecular Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
2.80
自引率
23.50%
发文量
60
审稿时长
10 weeks
期刊介绍: The Reports of Biochemistry & Molecular Biology (RBMB) is the official journal of the Varastegan Institute for Medical Sciences and is dedicated to furthering international exchange of medical and biomedical science experience and opinion and a platform for worldwide dissemination. The RBMB is a medical journal that gives special emphasis to biochemical research and molecular biology studies. The Journal invites original and review articles, short communications, reports on experiments and clinical cases, and case reports containing new insights into any aspect of biochemistry and molecular biology that are not published or being considered for publication elsewhere. Publications are accepted in the form of reports of original research, brief communications, case reports, structured reviews, editorials, commentaries, views and perspectives, letters to authors, book reviews, resources, news, and event agenda.
期刊最新文献
Protocatechuic Acid Protects Mice Against Non-Alcoholic Fatty Liver Disease by Attenuating Oxidative Stress and Improving Lipid Profile. Quercetin and Catechin Protects Leptin-Deficient Lepob/Ob Mice Against Alloxan-Induced Diabetes and Hepatotoxicity via Suppression of Oxidative Stress and Inflammation. In Vitro Differentiation of Endometrium Stem Cells into Cardiomyocytes: The Putative Effect of miR-17-5p, miR-26b-5p, miR-32-5p, and SMAD6. 3,4 Dihydroxyphenylethanol May Inhibit Metastasis in HepG2 Cells by Influencing the Expression of miR-21 and Genes Associated with Metastasis. A Comparison of Apelin Rs56204867 and Apelin Receptor Rs11544374 Gene Polymorphisms and Their Association with Risk of Preeclampsia in Southeast Iran.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1