Study of epiphytic non-geniculate coralline algae Reveals an Evolutionarily significant Genus, Pseudoderma gen. Nov. (Lithophylloideae, Corallinophycidae).

IF 3.6 1区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Phylogenetics and Evolution Pub Date : 2025-02-22 DOI:10.1016/j.ympev.2025.108313
Shu-Heng Yan, Xu-Lei Wang, Zhong-Min Sun, Bang-Mei Xia, Wen-Hui Gu, Guang-Ce Wang
{"title":"Study of epiphytic non-geniculate coralline algae Reveals an Evolutionarily significant Genus, Pseudoderma gen. Nov. (Lithophylloideae, Corallinophycidae).","authors":"Shu-Heng Yan, Xu-Lei Wang, Zhong-Min Sun, Bang-Mei Xia, Wen-Hui Gu, Guang-Ce Wang","doi":"10.1016/j.ympev.2025.108313","DOIUrl":null,"url":null,"abstract":"<p><p>Epiphytic non-geniculate coralline algae (ENCA) are distributed broadly, while limited research on their diversity has constrained our understanding of their ecological roles in marine environments, and impeded a comprehensive understanding of coralline algae. In this study, the diversity and ecological characteristics of ENCA epiphytic on 113 red macroalgal specimens collected from coastal China were examined. Three species delimitation algorithms revealed 24 primary species hypotheses (PSH), of which 22 were corroborated through phylogenetic analysis based on the psbA gene. Further multi-gene concatenated phylogenetic analyses and morpho-anatomical assessments revealed a new genus within Lithophylloideae, Pseudoderma gen. nov., which is closely related to the genus Titanoderma and exhibits morphological similarities. A hypothesis concerning the growth patterns was proposed to elucidate the morphological differences among Titanoderma, Lithophyllum, and Pseudoderma: the presence or absence of hypothallial palisade cells indicated distinct thallus thickening patterns, either dominated by elongation of the hypothallial cells or by division of the perithallial cells. These processes resulted in fast-growing thin-crust thalli or longer-lasting thick-crust thalli, adapted to epiphytic or epilithic lifestyles, respectively. Pseudoderma included at least six new taxa, and Pseudoderma sinicarum sp. nov., was designated as the holotype species of this genus. In conclusion, this study has underscored the unexpected biodiversity of ENCA, and the identification of the novel genus Pseudoderma from ENCA groups carried significant evolutionary implications for enhancing our understanding of coralline algae systematics.</p>","PeriodicalId":56109,"journal":{"name":"Molecular Phylogenetics and Evolution","volume":" ","pages":"108313"},"PeriodicalIF":3.6000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Phylogenetics and Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ympev.2025.108313","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Epiphytic non-geniculate coralline algae (ENCA) are distributed broadly, while limited research on their diversity has constrained our understanding of their ecological roles in marine environments, and impeded a comprehensive understanding of coralline algae. In this study, the diversity and ecological characteristics of ENCA epiphytic on 113 red macroalgal specimens collected from coastal China were examined. Three species delimitation algorithms revealed 24 primary species hypotheses (PSH), of which 22 were corroborated through phylogenetic analysis based on the psbA gene. Further multi-gene concatenated phylogenetic analyses and morpho-anatomical assessments revealed a new genus within Lithophylloideae, Pseudoderma gen. nov., which is closely related to the genus Titanoderma and exhibits morphological similarities. A hypothesis concerning the growth patterns was proposed to elucidate the morphological differences among Titanoderma, Lithophyllum, and Pseudoderma: the presence or absence of hypothallial palisade cells indicated distinct thallus thickening patterns, either dominated by elongation of the hypothallial cells or by division of the perithallial cells. These processes resulted in fast-growing thin-crust thalli or longer-lasting thick-crust thalli, adapted to epiphytic or epilithic lifestyles, respectively. Pseudoderma included at least six new taxa, and Pseudoderma sinicarum sp. nov., was designated as the holotype species of this genus. In conclusion, this study has underscored the unexpected biodiversity of ENCA, and the identification of the novel genus Pseudoderma from ENCA groups carried significant evolutionary implications for enhancing our understanding of coralline algae systematics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Phylogenetics and Evolution
Molecular Phylogenetics and Evolution 生物-进化生物学
CiteScore
7.50
自引率
7.30%
发文量
249
审稿时长
7.5 months
期刊介绍: Molecular Phylogenetics and Evolution is dedicated to bringing Darwin''s dream within grasp - to "have fairly true genealogical trees of each great kingdom of Nature." The journal provides a forum for molecular studies that advance our understanding of phylogeny and evolution, further the development of phylogenetically more accurate taxonomic classifications, and ultimately bring a unified classification for all the ramifying lines of life. Phylogeographic studies will be considered for publication if they offer EXCEPTIONAL theoretical or empirical advances.
期刊最新文献
Diversity, Phylogeny, and historical biogeography of the genus Coccocarpia (lichenized Ascomycota: Peltigerales) in the tropics. Study of epiphytic non-geniculate coralline algae Reveals an Evolutionarily significant Genus, Pseudoderma gen. Nov. (Lithophylloideae, Corallinophycidae). Deciphering the distribution and types of Multicopper oxidases in Basidiomycota fungi. Copepod phylogenomics supports Canuelloida as a valid order separate from Harpacticoida. Disentangling a genome-wide mosaic of conflicting phylogenetic signals in Western Rattlesnakes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1