Pinliang Liao, Zihong Wang, Miao Tian, Hong Chai, Xiaoyu Chen
{"title":"[Application Status of Machine Learning in Assisted Diagnosis Techniques of Cardiovascular Diseases].","authors":"Pinliang Liao, Zihong Wang, Miao Tian, Hong Chai, Xiaoyu Chen","doi":"10.12455/j.issn.1671-7104.240214","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, cardiovascular disease has become a common disease. With the development of machine learning and big data technologies, the processing ability of electrocardiogram (ECG) signals has been greatly enhanced through new computer technologies, enabling the auxiliary diagnosis technology for cardiovascular disease (CVD) to achieve new improvements. This article discusses the application of machine learning in ECG processing, especially in the auxiliary diagnosis of diseases. Firstly, the conventional signal preprocessing methods are introduced, and then the EEG signal processing methods based on feature extraction and fuzzy classification are explored. Secondly, the application of auxiliary diagnosis in CVD is further summarized. Finally, the advantages and disadvantages of the two methods are analyzed, and based on this, a design of an auxiliary diagnostic system compatible with the two methods is proposed, providing a new perspective for similar applied researches in the future.</p>","PeriodicalId":52535,"journal":{"name":"中国医疗器械杂志","volume":"49 1","pages":"24-34"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国医疗器械杂志","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12455/j.issn.1671-7104.240214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, cardiovascular disease has become a common disease. With the development of machine learning and big data technologies, the processing ability of electrocardiogram (ECG) signals has been greatly enhanced through new computer technologies, enabling the auxiliary diagnosis technology for cardiovascular disease (CVD) to achieve new improvements. This article discusses the application of machine learning in ECG processing, especially in the auxiliary diagnosis of diseases. Firstly, the conventional signal preprocessing methods are introduced, and then the EEG signal processing methods based on feature extraction and fuzzy classification are explored. Secondly, the application of auxiliary diagnosis in CVD is further summarized. Finally, the advantages and disadvantages of the two methods are analyzed, and based on this, a design of an auxiliary diagnostic system compatible with the two methods is proposed, providing a new perspective for similar applied researches in the future.
期刊介绍:
Chinese Journal of Medical Instrumentation mainly reports on the development, progress, research and development, production, clinical application, management, and maintenance of medical devices and biomedical engineering. Its aim is to promote the exchange of information on medical devices and biomedical engineering in China and turn the journal into a high-quality academic journal that leads academic directions and advocates academic debates.