Coupling Photocatalytic Reduction and Biosynthesis towards Sustainable CO2 Upcycling

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2025-02-26 DOI:10.1002/anie.202423995
Mengjie Yu, Maolong Li, Xinzhe Zhang, Zhen Ge, Enze Xu, Lei Wang, Boyu Yin, Yibo Dou, Yusen Yang, Xin Zhang, Qiang Fei, Min Wei, Tianwei Tan
{"title":"Coupling Photocatalytic Reduction and Biosynthesis towards Sustainable CO2 Upcycling","authors":"Mengjie Yu, Maolong Li, Xinzhe Zhang, Zhen Ge, Enze Xu, Lei Wang, Boyu Yin, Yibo Dou, Yusen Yang, Xin Zhang, Qiang Fei, Min Wei, Tianwei Tan","doi":"10.1002/anie.202423995","DOIUrl":null,"url":null,"abstract":"Upcycling carbon dioxide (CO2) into long-chain compounds has attracted considerable attention with respect to mitigating environmental problems and obtaining value-added feedstocks, but remains a great challenge. Herein, we report a tandem photocatalysis-biosynthesis strategy for efficient CO2 reduction to energy-rich sucrose or α-farnesene. Firstly, photocatalytic reduction of CO2 to CH4 was optimized over the transitional metal doped ZnO (M-ZnO). The as-prepared Ni-ZnO preferentially reduces CO2 to CH4 with a production rate of 1539.1 µmol g−1 h−1 and a selectivity of 90%, owing to the unique interface structure (Znδ+−O−Niβ+). Subsequently, Methylomicrobium buryatense 5GB1C was genetically engineered to produce sucrose or α-farnesene using photocatalytically-obtained CH4 as the sole carbon source, with a titer of 96.3 and 43.9 mg L−1, respectively. This study provides a green, low-energy pathway for the synthesis of long-chain compounds from CO2 as the carbon source, which sheds new light on tackling long-term energy demands and sustainable CO2 upcycling.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"51 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202423995","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Upcycling carbon dioxide (CO2) into long-chain compounds has attracted considerable attention with respect to mitigating environmental problems and obtaining value-added feedstocks, but remains a great challenge. Herein, we report a tandem photocatalysis-biosynthesis strategy for efficient CO2 reduction to energy-rich sucrose or α-farnesene. Firstly, photocatalytic reduction of CO2 to CH4 was optimized over the transitional metal doped ZnO (M-ZnO). The as-prepared Ni-ZnO preferentially reduces CO2 to CH4 with a production rate of 1539.1 µmol g−1 h−1 and a selectivity of 90%, owing to the unique interface structure (Znδ+−O−Niβ+). Subsequently, Methylomicrobium buryatense 5GB1C was genetically engineered to produce sucrose or α-farnesene using photocatalytically-obtained CH4 as the sole carbon source, with a titer of 96.3 and 43.9 mg L−1, respectively. This study provides a green, low-energy pathway for the synthesis of long-chain compounds from CO2 as the carbon source, which sheds new light on tackling long-term energy demands and sustainable CO2 upcycling.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Photobiocatalytic Reaction: From Single Component to Triple Component Coupling Photocatalytic Reduction and Biosynthesis towards Sustainable CO2 Upcycling Nanoconfinement-induced Electrochemical Ion-Solvent Cointercalation in Pillared Titanate Host Materials Pure Hydrocarbon Hosts Enabling Efficient Multi-Resonance TADF Blue-Emitting Organic Light-Emitting Diodes Ferritin–Inspired Encapsulation and Stabilization of Gold Nanoclusters for High–Performance Photothermal Conversion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1