Electronic Localization Enables Long-Cycling Sulfides-Based All-Solid-State Lithium Batteries

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2025-02-25 DOI:10.1002/anie.202501411
Dewen Wang, Chong Liu, Ruoyu Wang, Tianran Zhang, Butian Chen, Tenghui Wang, Qi Lu, Wen Yin, Prof. Xiangfeng Liu
{"title":"Electronic Localization Enables Long-Cycling Sulfides-Based All-Solid-State Lithium Batteries","authors":"Dewen Wang,&nbsp;Chong Liu,&nbsp;Ruoyu Wang,&nbsp;Tianran Zhang,&nbsp;Butian Chen,&nbsp;Tenghui Wang,&nbsp;Qi Lu,&nbsp;Wen Yin,&nbsp;Prof. Xiangfeng Liu","doi":"10.1002/anie.202501411","DOIUrl":null,"url":null,"abstract":"<p>Argyrodite-based sulfide electrolytes have received considerable attention in all-solid-state lithium metal batteries owing to their high ionic conductivity and good mechanical property. However, the reactivity between sulfide electrolytes and lithium anode leads to continuous interfacial reactions and dendrites growth, which severely hinders their practical applications. We propose an electron localization strategy by modulating the d–p orbital hybridization within the PS<sub>4</sub> tetrahedral structure of Li<sub>6</sub>PS<sub>5</sub>Cl through homogeneous incorporation of yttrium (Y) and oxygen (O). The introduction of Y strengthens the Madelung energy with sulfur (S) atom and induces the electronic localization of S atom, which suppresses the interaction between lithium metal and S atom of the tetrahedron. The air-stability is also enhanced due to oxygen introduction. Furthermore, the in situ formation of Li<sub>2</sub>O interphase acts as a protective barrier, synergistically mitigating the interfacial reactions between lithium metal and Li<sub>6</sub>PS<sub>5</sub>Cl. The Li symmetric cell with the modulated Li<sub>6</sub>PS<sub>5</sub>Cl electrolyte achieves stable lithium plating/stripping for over 4800 h. The all-solid-state batteries with LiCoO<sub>2</sub>/Li-In electrode display a remarkable long cycle performance with 100% retention after 1300 cycles at 0.5 C. This study presents a distinct strategy that employs the electron localization driven by modulating orbital hybridization to achieve ultrastable interface in sulfide-based all-solid-state lithium batteries.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 19","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202501411","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Argyrodite-based sulfide electrolytes have received considerable attention in all-solid-state lithium metal batteries owing to their high ionic conductivity and good mechanical property. However, the reactivity between sulfide electrolytes and lithium anode leads to continuous interfacial reactions and dendrites growth, which severely hinders their practical applications. We propose an electron localization strategy by modulating the d–p orbital hybridization within the PS4 tetrahedral structure of Li6PS5Cl through homogeneous incorporation of yttrium (Y) and oxygen (O). The introduction of Y strengthens the Madelung energy with sulfur (S) atom and induces the electronic localization of S atom, which suppresses the interaction between lithium metal and S atom of the tetrahedron. The air-stability is also enhanced due to oxygen introduction. Furthermore, the in situ formation of Li2O interphase acts as a protective barrier, synergistically mitigating the interfacial reactions between lithium metal and Li6PS5Cl. The Li symmetric cell with the modulated Li6PS5Cl electrolyte achieves stable lithium plating/stripping for over 4800 h. The all-solid-state batteries with LiCoO2/Li-In electrode display a remarkable long cycle performance with 100% retention after 1300 cycles at 0.5 C. This study presents a distinct strategy that employs the electron localization driven by modulating orbital hybridization to achieve ultrastable interface in sulfide-based all-solid-state lithium batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电子定位实现基于硫化物的长周期全固态锂电池
银矾基硫化物电解质因其高离子导电性和良好的力学性能在全固态锂金属电池中受到广泛关注。然而,硫化物电解质与锂阳极之间的反应性导致了界面反应的持续和枝晶的生长,严重阻碍了硫化物电解质的实际应用。本文提出了一种通过钇(Y)和氧(O)的均匀引入来调节PS4四面体结构中d-p轨道杂化的电子局域化策略。Y的引入增强了与硫(S)原子的马德隆能,诱导了S原子的电子局域化,从而抑制了金属锂与四面体S原子的相互作用。由于氧气的引入,空气稳定性也得到了提高。此外,Li2O界面相的原位形成起到了保护屏障的作用,协同缓解了金属锂与Li6PS5Cl之间的界面反应。采用调制的Li6PS5Cl电解液的锂对称电池可实现超过4800 h的稳定锂电镀/溶出。采用LiCoO2/Li- in电极的全固态电池在0.5 c下1300次循环后仍能保持100%的长循环性能。本研究提出了一种独特的策略,利用调制轨道杂化驱动的电子定位实现硫化物基全固态锂电池的超稳定界面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
A Fluorine-Free Chaotropic Electrolyte Promoting Zinc Peroxide Chemistry for Non-Alkaline Zinc-Air Batteries. Ultralow-Temperature Redispersion of Platinum Nanoparticle Catalysts. Chemistry in Transformation: A European Moment. Atomic-Layered Platinum-Based Intermetallic with Phosphorus Pillar Nanoengineering Enables pH-Universal Hydrogen Oxidation Catalysis. Reversible Na + /I − Dual‐Ion Chemistry by Electrolyte Engineering Enables High‐Rate and Long‐Lifespan Energy Storage Device
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1