TLSH-MOT: Drone-View Video Multiple Object Tracking via Transformer-Based Locally Sensitive Hash

IF 8.6 1区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Geoscience and Remote Sensing Pub Date : 2025-02-25 DOI:10.1109/TGRS.2025.3545081
Yubin Yuan;Yiquan Wu;Langyue Zhao;Yuqi Liu;Yaxuan Pang
{"title":"TLSH-MOT: Drone-View Video Multiple Object Tracking via Transformer-Based Locally Sensitive Hash","authors":"Yubin Yuan;Yiquan Wu;Langyue Zhao;Yuqi Liu;Yaxuan Pang","doi":"10.1109/TGRS.2025.3545081","DOIUrl":null,"url":null,"abstract":"Multiple object tracking (MOT) plays an essential role in drone-view remote sensing applications, such as urban management, emergency rescue, and maritime monitoring. However, due to large variations in object scale and position, the frequent feature loss across frames, and difficulties in matching, traditional methods struggle to achieve high-tracking accuracy in such challenging environments. To address these issues, we propose a Transformer-based locally sensitive hash MOT (TLSH-MOT) method in drone-view remote sensing scenarios. First, a frame-level feature extraction and enhancement module is introduced, integrating a nominee proposal generation (NPG) unit and a tilt convolutional vision Transformer (ViT), which enables adaptive detection of objects across varying scales and perspectives. Next, a spatiotemporal memory (STM) structure is designed to mitigate instantaneous environmental interference and periodic changes using short-term and long-term memory blocks, thereby enhancing tracking stability under complex meteorological conditions. In addition, a temporal enhancement feature decoder (TEFD) fuses multisource feature information to better understand the motion patterns of remote sensing objects. Finally, a local sensitive hash (LSH) IDLinker ensures efficient feature matching, significantly improving trajectory association in large-scale monitoring scenarios. Experimental results show that TLSH-MOT achieves MOT accuracy of 40.7% and 62.2% on VisDrone and UAVDT datasets, respectively, which verifies the superiority of TLSH-MOT in the remote sensing video tracking field. The framework’s code is released at: <uri>https://github.com/YubinYuan/TLSH-MOT</uri>.","PeriodicalId":13213,"journal":{"name":"IEEE Transactions on Geoscience and Remote Sensing","volume":"63 ","pages":"1-16"},"PeriodicalIF":8.6000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Geoscience and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10902600/","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Multiple object tracking (MOT) plays an essential role in drone-view remote sensing applications, such as urban management, emergency rescue, and maritime monitoring. However, due to large variations in object scale and position, the frequent feature loss across frames, and difficulties in matching, traditional methods struggle to achieve high-tracking accuracy in such challenging environments. To address these issues, we propose a Transformer-based locally sensitive hash MOT (TLSH-MOT) method in drone-view remote sensing scenarios. First, a frame-level feature extraction and enhancement module is introduced, integrating a nominee proposal generation (NPG) unit and a tilt convolutional vision Transformer (ViT), which enables adaptive detection of objects across varying scales and perspectives. Next, a spatiotemporal memory (STM) structure is designed to mitigate instantaneous environmental interference and periodic changes using short-term and long-term memory blocks, thereby enhancing tracking stability under complex meteorological conditions. In addition, a temporal enhancement feature decoder (TEFD) fuses multisource feature information to better understand the motion patterns of remote sensing objects. Finally, a local sensitive hash (LSH) IDLinker ensures efficient feature matching, significantly improving trajectory association in large-scale monitoring scenarios. Experimental results show that TLSH-MOT achieves MOT accuracy of 40.7% and 62.2% on VisDrone and UAVDT datasets, respectively, which verifies the superiority of TLSH-MOT in the remote sensing video tracking field. The framework’s code is released at: https://github.com/YubinYuan/TLSH-MOT.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TLSH-MOT:基于变压器的局部敏感哈希的无人机视频多目标跟踪
多目标跟踪(MOT)在城市管理、应急救援和海上监测等无人机遥感应用中发挥着至关重要的作用。然而,由于目标尺度和位置变化较大,跨帧特征丢失频繁,匹配困难,传统方法难以在这种具有挑战性的环境中实现高跟踪精度。为了解决这些问题,我们提出了一种基于变压器的局部敏感哈希MOT (TLSH-MOT)方法。首先,介绍了帧级特征提取和增强模块,该模块集成了候选提案生成(NPG)单元和倾斜卷积视觉变压器(ViT),能够自适应检测不同尺度和视角的物体。其次,设计时空记忆(STM)结构,利用短期和长期记忆块减轻瞬时环境干扰和周期性变化,从而增强复杂气象条件下的跟踪稳定性。此外,时间增强特征解码器(TEFD)融合了多源特征信息,以更好地理解遥感目标的运动模式。最后,局部敏感散列(LSH) IDLinker保证了高效的特征匹配,显著改善了大规模监控场景下的轨迹关联。实验结果表明,TLSH-MOT在VisDrone和UAVDT数据集上的MOT精度分别达到40.7%和62.2%,验证了TLSH-MOT在遥感视频跟踪领域的优越性。该框架的代码发布在:https://github.com/YubinYuan/TLSH-MOT。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Geoscience and Remote Sensing
IEEE Transactions on Geoscience and Remote Sensing 工程技术-地球化学与地球物理
CiteScore
11.50
自引率
28.00%
发文量
1912
审稿时长
4.0 months
期刊介绍: IEEE Transactions on Geoscience and Remote Sensing (TGRS) is a monthly publication that focuses on the theory, concepts, and techniques of science and engineering as applied to sensing the land, oceans, atmosphere, and space; and the processing, interpretation, and dissemination of this information.
期刊最新文献
HAM-CD: Hybrid Attention Mamba for Remote Sensing Change Detection Land Surface Temperature End-to-end Retrieval from Fengyun-4B AGRI Thermal Infrared Remote Sensing Data Considering the Emissivity Angular Effect PointCleaner: Dynamic Manifold Path Optimization for LiDAR Point Cloud Denoising See Hidden Insight From Transposition: Multi-Axis Feature Aggregation for Aerial Object Detection Harmonic-Assisted TDOA Localization Method for Saturation Interference Sources in SAR Satellite Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1