{"title":"Squashed quantum non-Markovianity: a measure of genuine quantum non-Markovianity in states","authors":"Rajeev Gangwar, Tanmoy Pandit, Kaumudibikash Goswami, Siddhartha Das, Manabendra Nath Bera","doi":"10.22331/q-2025-02-26-1646","DOIUrl":null,"url":null,"abstract":"Quantum non-Markovianity in tripartite quantum states $\\rho_{ABC}$ represents a correlation between systems $A$ and $C$ when conditioned on the system $B$ and is known to have both classical and quantum contributions. However, a systematic characterization of the latter is missing. To address this, we propose a faithful measure for non-Markovianity of genuine quantum origin called squashed quantum non-Markovianity (sQNM). It is based on the quantum conditional mutual information and is defined by the left-over non-Markovianity after squashing out all non-quantum contributions. It is lower bounded by the squashed entanglement between non-conditioning systems in the reduced state and is delimited by the extendibility of either of the non-conditioning systems. We show that the sQNM is monogamous, asymptotically continuous, convex, additive on tensor-product states, and generally super-additive. We characterize genuine quantum non-Markovianity as a resource via a convex resource theory after identifying free states with vanishing sQNM and free operations that do not increase sQNM in states. We use our resource-theoretic framework to bound the rate of state transformations under free operations and to study state transformation under non-free operations; in particular, we find the quantum communication cost from Bob ($B$) to Alice ($A$) or Charlie ($C$) is lower bounded by the change in sQNM in the states. The sQNM finds operational meaning; in particular, the optimal rate of private communication in a variant of conditional one-time pad protocol is twice the sQNM. Also, the minimum deconstruction cost for a variant of quantum deconstruction protocol is given twice the sQNM of the state.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"83 1 Pt 2 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-02-26-1646","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum non-Markovianity in tripartite quantum states $\rho_{ABC}$ represents a correlation between systems $A$ and $C$ when conditioned on the system $B$ and is known to have both classical and quantum contributions. However, a systematic characterization of the latter is missing. To address this, we propose a faithful measure for non-Markovianity of genuine quantum origin called squashed quantum non-Markovianity (sQNM). It is based on the quantum conditional mutual information and is defined by the left-over non-Markovianity after squashing out all non-quantum contributions. It is lower bounded by the squashed entanglement between non-conditioning systems in the reduced state and is delimited by the extendibility of either of the non-conditioning systems. We show that the sQNM is monogamous, asymptotically continuous, convex, additive on tensor-product states, and generally super-additive. We characterize genuine quantum non-Markovianity as a resource via a convex resource theory after identifying free states with vanishing sQNM and free operations that do not increase sQNM in states. We use our resource-theoretic framework to bound the rate of state transformations under free operations and to study state transformation under non-free operations; in particular, we find the quantum communication cost from Bob ($B$) to Alice ($A$) or Charlie ($C$) is lower bounded by the change in sQNM in the states. The sQNM finds operational meaning; in particular, the optimal rate of private communication in a variant of conditional one-time pad protocol is twice the sQNM. Also, the minimum deconstruction cost for a variant of quantum deconstruction protocol is given twice the sQNM of the state.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.