Linking DNA-packing density distribution and TAD boundary locations

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Proceedings of the National Academy of Sciences of the United States of America Pub Date : 2025-02-25 DOI:10.1073/pnas.2418456122
Luming Meng, Fu Kit Sheong, Qiong Luo
{"title":"Linking DNA-packing density distribution and TAD boundary locations","authors":"Luming Meng, Fu Kit Sheong, Qiong Luo","doi":"10.1073/pnas.2418456122","DOIUrl":null,"url":null,"abstract":"DNA is heterogeneously packaged into chromatin, which is further organized into topologically associating domains (TADs) with sharp boundaries. These boundary locations are critical for genome regulation. Here, we explore how the distribution of DNA-packing density across chromatin affects the TAD boundary locations. We develop a polymer-physics-based model that utilizes DNA accessibility data to parameterize DNA-packing density along chromosomes, treating them as heteropolymers, and simulates the stochastic folding of these heteropolymers within a nucleus to yield a conformation ensemble. Such an ensemble reproduces a subset (over 60%) of TAD boundaries across the human genome, as confirmed by Hi-C data. Additionally, it reproduces the spatial distance matrices of 2-Mb genomic regions provided by FISH experiments. Furthermore, our model suggests that utilizing DNA accessibility data alone as input is sufficient to predict the emergence and disappearance of key TADs during early T cell differentiation. We show that stochastic folding of heteropolymers in a confined space can replicate both the prevalence of chromatin domain structures and the cell-to-cell variation in domain boundary positions observed in single-cell experiments. Furthermore, regions of lower DNA-packing density preferentially form domain boundaries, and this preference drives the emergence of TAD boundaries observed in ensemble-averaged Hi-C maps. The enrichment of TAD boundaries at CTCF binding sites can be attributed to the influence of CTCF binding on local DNA-packing density in our model. Collectively, our findings establish a strong link between TAD boundaries and regions of lower DNA-packing density, providing insights into the mechanisms underlying TAD formation.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"31 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2418456122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

DNA is heterogeneously packaged into chromatin, which is further organized into topologically associating domains (TADs) with sharp boundaries. These boundary locations are critical for genome regulation. Here, we explore how the distribution of DNA-packing density across chromatin affects the TAD boundary locations. We develop a polymer-physics-based model that utilizes DNA accessibility data to parameterize DNA-packing density along chromosomes, treating them as heteropolymers, and simulates the stochastic folding of these heteropolymers within a nucleus to yield a conformation ensemble. Such an ensemble reproduces a subset (over 60%) of TAD boundaries across the human genome, as confirmed by Hi-C data. Additionally, it reproduces the spatial distance matrices of 2-Mb genomic regions provided by FISH experiments. Furthermore, our model suggests that utilizing DNA accessibility data alone as input is sufficient to predict the emergence and disappearance of key TADs during early T cell differentiation. We show that stochastic folding of heteropolymers in a confined space can replicate both the prevalence of chromatin domain structures and the cell-to-cell variation in domain boundary positions observed in single-cell experiments. Furthermore, regions of lower DNA-packing density preferentially form domain boundaries, and this preference drives the emergence of TAD boundaries observed in ensemble-averaged Hi-C maps. The enrichment of TAD boundaries at CTCF binding sites can be attributed to the influence of CTCF binding on local DNA-packing density in our model. Collectively, our findings establish a strong link between TAD boundaries and regions of lower DNA-packing density, providing insights into the mechanisms underlying TAD formation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
期刊最新文献
Correction for Sibille et al., Efficient mapping of the thalamocortical monosynaptic connectivity in vivo by tangential insertions of high-density electrodes in the cortex. Correction for Chae et al., Vulnerability to natural disasters and sustainable consumption: Unraveling political and regional differences. Correction for Deng et al., A coadapted KNL1 and spindle assembly checkpoint axis orchestrates precise mitosis in Arabidopsis. Correction for Deng et al., The Arabidopsis BUB1/MAD3 family protein BMF3 requires BUB3.3 to recruit CDC20 to kinetochores in spindle assembly checkpoint signaling. Correction for Guo et al., Targeting amyloid-β in glaucoma treatment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1