Maxence Noel, Suttipong Suttapitugsakul, Richard D. Cummings, Robert G. Mealer
{"title":"O-GalNAc glycans are enriched in neuronal tracts and regulate nodes of Ranvier","authors":"Maxence Noel, Suttipong Suttapitugsakul, Richard D. Cummings, Robert G. Mealer","doi":"10.1073/pnas.2418949122","DOIUrl":null,"url":null,"abstract":"Protein O-glycosylation is a critical modification in the brain, as genetic variants in the pathway are associated with common and severe neuropsychiatric phenotypes. However, little is known about the most abundant O-glycans in the mammalian brain, which are N-acetylgalactosamine (O-GalNAc) linked. Here, we determined the spatial localization, protein carriers, and cellular function of O-GalNAc glycans in the mouse brain. We observed striking spatial enrichment of O-GalNAc glycans in neuronal tracts, and specifically at nodes of Ranvier, specialized structures involved in signal propagation in the brain. Glycoproteomic analysis revealed that more than half of the identified O-GalNAc glycans were present on chondroitin sulfate proteoglycans termed lecticans, and display both domain enrichment and regional heterogeneity. Inhibition of O-GalNAc synthesis in neurons reduced binding of Siglec-4, a known regulator of neurite growth, and shortened the length of nodes of Ranvier. This work establishes a function of O-GalNAc glycans in the brain and will inform future studies on their role in development and disease.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"32 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2418949122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Protein O-glycosylation is a critical modification in the brain, as genetic variants in the pathway are associated with common and severe neuropsychiatric phenotypes. However, little is known about the most abundant O-glycans in the mammalian brain, which are N-acetylgalactosamine (O-GalNAc) linked. Here, we determined the spatial localization, protein carriers, and cellular function of O-GalNAc glycans in the mouse brain. We observed striking spatial enrichment of O-GalNAc glycans in neuronal tracts, and specifically at nodes of Ranvier, specialized structures involved in signal propagation in the brain. Glycoproteomic analysis revealed that more than half of the identified O-GalNAc glycans were present on chondroitin sulfate proteoglycans termed lecticans, and display both domain enrichment and regional heterogeneity. Inhibition of O-GalNAc synthesis in neurons reduced binding of Siglec-4, a known regulator of neurite growth, and shortened the length of nodes of Ranvier. This work establishes a function of O-GalNAc glycans in the brain and will inform future studies on their role in development and disease.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.