Accelerated Optimization of Compositions and Chemical Ordering for Bimetallic Alloy Catalysts Using Bayesian Learning

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL ACS Catalysis Pub Date : 2025-02-26 DOI:10.1021/acscatal.5c00467
Xiangfu Niu, Shuwei Li, Zheyu Zhang, Haohong Duan, Rui Zhang, Jianqiu Li, Liang Zhang
{"title":"Accelerated Optimization of Compositions and Chemical Ordering for Bimetallic Alloy Catalysts Using Bayesian Learning","authors":"Xiangfu Niu, Shuwei Li, Zheyu Zhang, Haohong Duan, Rui Zhang, Jianqiu Li, Liang Zhang","doi":"10.1021/acscatal.5c00467","DOIUrl":null,"url":null,"abstract":"Alloy materials are crucial to various applications, including catalysis and energy storage, due to their superior performance, cost-efficiency, and tunable properties. However, the vast compositional space and complex chemical ordering of alloys pose significant challenges in identifying the optimal material designs. We present an active learning framework utilizing Bayesian optimization to streamline the discovery of high-performance alloy materials. Applying this framework to PtNi oxygen reduction reaction (ORR) catalysts, we successfully identified the global optimal structures featuring a Pt shell and a PtNi core. Our approach was further extended to explore different morphologies and compositions, revealing the most favorable chemical orderings for ORR. This work provides a comprehensive strategy for the accelerated design of multicomponent alloy materials and highlights the critical role of chemical ordering in optimizing the structure–performance relationship, facilitating the development of high-performance catalysts for energy applications.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"15 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.5c00467","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Alloy materials are crucial to various applications, including catalysis and energy storage, due to their superior performance, cost-efficiency, and tunable properties. However, the vast compositional space and complex chemical ordering of alloys pose significant challenges in identifying the optimal material designs. We present an active learning framework utilizing Bayesian optimization to streamline the discovery of high-performance alloy materials. Applying this framework to PtNi oxygen reduction reaction (ORR) catalysts, we successfully identified the global optimal structures featuring a Pt shell and a PtNi core. Our approach was further extended to explore different morphologies and compositions, revealing the most favorable chemical orderings for ORR. This work provides a comprehensive strategy for the accelerated design of multicomponent alloy materials and highlights the critical role of chemical ordering in optimizing the structure–performance relationship, facilitating the development of high-performance catalysts for energy applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
期刊最新文献
Activity Regulation of a Glutamine Amidotransferase Bienzyme Complex by Substrate-Induced Subunit Interface Expansion Identification of Sabatier Descriptors for Hydrodeoxygenation Activity and Selectivity on Supported Molybdenum Oxide Catalysts Tuning Vacancy in Metal Oxide Support to Enhance Activity and Durability of Pt Catalysts for the Methanol Oxidation Reaction Accelerated Optimization of Compositions and Chemical Ordering for Bimetallic Alloy Catalysts Using Bayesian Learning Recent Advances in Desulfurization of VOSCs: Multiple Catalysts and Coupling Enzymes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1