Fengying Gao, Xinyu Li, Lihao Liu, Mengmeng Lu, Huaijie Shi, Xuan Yu, Lei Ding, Shibin Wang, Sheng Dai, Xing Zhong, Jianguo Wang
{"title":"Effective electrochemical ozone production coupled with hydrogen evolution reaction by synergistic effect of PtCo alloy and borides","authors":"Fengying Gao, Xinyu Li, Lihao Liu, Mengmeng Lu, Huaijie Shi, Xuan Yu, Lei Ding, Shibin Wang, Sheng Dai, Xing Zhong, Jianguo Wang","doi":"10.1016/j.ces.2025.121444","DOIUrl":null,"url":null,"abstract":"Platinum-based electrocatalysts exhibited good performance in electrocatalytic ozone production (EOP) and hydrogen evolution reaction (HER). Nonetheless, the widespread application of platinum is restricted due to its limited availability and high cost. In this study, we propose an alloying strategy for the synthesis of PtCo/Co<sub>2</sub>B, which achieved a Faraday efficiency (FE) of 9.09 % for EOP and overpotential of 51.5 mV for HER at 10 mA⋅cm<sup>−2</sup> in acidic conditions. Theoretical calculations demonstrate that the synergy between the PtCo and Co<sub>2</sub>B in PtCo/Co<sub>2</sub>B modulates the adsorption properties of the O<sub>3</sub>* intermediate, thereby facilitating the reaction towards the EOP. Furthermore, the chemisorption energy of hydrogen is approximately zero, indicating optimal electrocatalytic activity for HER. Such unique structure enhances the performance of electrocatalyst and significantly extends its durability in practical applications. In addition to its electrochemical performance, the PtCo/Co<sub>2</sub>B electrocatalyst effectively degrades organic pollutants and demonstrates strong sterilization capabilities.","PeriodicalId":271,"journal":{"name":"Chemical Engineering Science","volume":"26 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ces.2025.121444","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Platinum-based electrocatalysts exhibited good performance in electrocatalytic ozone production (EOP) and hydrogen evolution reaction (HER). Nonetheless, the widespread application of platinum is restricted due to its limited availability and high cost. In this study, we propose an alloying strategy for the synthesis of PtCo/Co2B, which achieved a Faraday efficiency (FE) of 9.09 % for EOP and overpotential of 51.5 mV for HER at 10 mA⋅cm−2 in acidic conditions. Theoretical calculations demonstrate that the synergy between the PtCo and Co2B in PtCo/Co2B modulates the adsorption properties of the O3* intermediate, thereby facilitating the reaction towards the EOP. Furthermore, the chemisorption energy of hydrogen is approximately zero, indicating optimal electrocatalytic activity for HER. Such unique structure enhances the performance of electrocatalyst and significantly extends its durability in practical applications. In addition to its electrochemical performance, the PtCo/Co2B electrocatalyst effectively degrades organic pollutants and demonstrates strong sterilization capabilities.
期刊介绍:
Chemical engineering enables the transformation of natural resources and energy into useful products for society. It draws on and applies natural sciences, mathematics and economics, and has developed fundamental engineering science that underpins the discipline.
Chemical Engineering Science (CES) has been publishing papers on the fundamentals of chemical engineering since 1951. CES is the platform where the most significant advances in the discipline have ever since been published. Chemical Engineering Science has accompanied and sustained chemical engineering through its development into the vibrant and broad scientific discipline it is today.