Profiling of Biofluid Metabolites with a Kinetically Differentiated Binary Biosensing Platform

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL Analytical Chemistry Pub Date : 2025-02-26 DOI:10.1021/acs.analchem.4c03404
Bing Qi, Ziyun Miao, Jiahui Tan, Yingqian Wang, Jie Wang
{"title":"Profiling of Biofluid Metabolites with a Kinetically Differentiated Binary Biosensing Platform","authors":"Bing Qi, Ziyun Miao, Jiahui Tan, Yingqian Wang, Jie Wang","doi":"10.1021/acs.analchem.4c03404","DOIUrl":null,"url":null,"abstract":"Biofluid metabolites have a crucial linkage with the health of the human body, and developing a universal method for metabolite monitoring is imperative for disease diagnosis and health management. Herein, we report a kinetically differentiated binary biosensing platform that is specifically responsive to NAD(P)H for profiling diverse biofluid metabolites. The kinetically differentiated binary biosensing platform comprises a cyanine derivative dye with fast reaction kinetics and a quinolinium derivative dye with slow reaction kinetics. Compared to the traditional unitary strategy for NAD(P)H detection, the linear range of the binary biosensing platform is widened by up to 20 times. NAD(P)H are ubiquitous cofactors in living systems, and metabolite production generally involves the consumption or generation of NAD(P)H. Thus, biofluid metabolites can be easily quantified by measuring the variation of NAD(P)H concentration during biochemical reactions with the binary biosensing platform. In this study, serum sorbitol, 2-hydroxybutyric acid (2HB), and α-ketoglutarate (AKG) were all quantified by the binary biosensing platform with accuracies higher than 93%. The kinetically differentiated binary biosensing platform can be extended to the analysis of any molecule that can react directly or indirectly with NAD(P)H. In addition, we constructed a paper-based assay with the binary biosensing platform, and the test papers showed good promise in the point-of-care (POC) profiling of biofluid metabolites. This study proposes a simple strategy to expand the calibration range of traditional unitary detection systems and further provides a universal paradigm for high throughput profiling of disease-associated biomolecules, which offers good promise in disease diagnosis and health management.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"10 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c03404","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Biofluid metabolites have a crucial linkage with the health of the human body, and developing a universal method for metabolite monitoring is imperative for disease diagnosis and health management. Herein, we report a kinetically differentiated binary biosensing platform that is specifically responsive to NAD(P)H for profiling diverse biofluid metabolites. The kinetically differentiated binary biosensing platform comprises a cyanine derivative dye with fast reaction kinetics and a quinolinium derivative dye with slow reaction kinetics. Compared to the traditional unitary strategy for NAD(P)H detection, the linear range of the binary biosensing platform is widened by up to 20 times. NAD(P)H are ubiquitous cofactors in living systems, and metabolite production generally involves the consumption or generation of NAD(P)H. Thus, biofluid metabolites can be easily quantified by measuring the variation of NAD(P)H concentration during biochemical reactions with the binary biosensing platform. In this study, serum sorbitol, 2-hydroxybutyric acid (2HB), and α-ketoglutarate (AKG) were all quantified by the binary biosensing platform with accuracies higher than 93%. The kinetically differentiated binary biosensing platform can be extended to the analysis of any molecule that can react directly or indirectly with NAD(P)H. In addition, we constructed a paper-based assay with the binary biosensing platform, and the test papers showed good promise in the point-of-care (POC) profiling of biofluid metabolites. This study proposes a simple strategy to expand the calibration range of traditional unitary detection systems and further provides a universal paradigm for high throughput profiling of disease-associated biomolecules, which offers good promise in disease diagnosis and health management.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
期刊最新文献
Profiling of Biofluid Metabolites with a Kinetically Differentiated Binary Biosensing Platform Integrating FT-ICR MS and Machine Learning to Forecast Acid Content Across Boiling Cuts Optimization of the Entropy-Based Wavelet Method for Removing Strong RF and AC Interferences in a Charge Detection Linear Ion Trap Mass Spectrometer Single-Use Electrochemical Aptamer-Based Sensors for Calibration-Free Measurements in Human Saliva via Dual-Frequency Approaches: Prospects and Challenges GLASSR-Net: Glass Substrate Spectral Restoration Neural Network for Fourier Transform Infrared Microspectroscopy in the Fingerprint Region
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1