Intelligent Target Detection Method for HFSWR Based on Dual-Scale Branch Fusion Network and Adaptive Threshold Control

Yuanzheng Ji;Aijun Liu;Shuai Shao;Changjun Yu;Xuekun Chen
{"title":"Intelligent Target Detection Method for HFSWR Based on Dual-Scale Branch Fusion Network and Adaptive Threshold Control","authors":"Yuanzheng Ji;Aijun Liu;Shuai Shao;Changjun Yu;Xuekun Chen","doi":"10.1109/TRS.2025.3540016","DOIUrl":null,"url":null,"abstract":"High-frequency surface wave radar (HFSWR) is a crucial tool for oceanic remote sensing and surveillance; however, radar target detection is challenged by the presence of background clutter and interference. In response, this article designs a novel dual-scale branch fusion network specifically for detecting target signals in the range-Doppler (RD) spectrum. The network effectively enhances the ability to distinguish between targets and clutter by combining large-scale environmental feature sensing with small-scale target signal structure analysis. Additionally, we propose a novel detection threshold adjustment mechanism based on the RD spectrum perception network. First, an initial detection threshold is calculated using the traditional constant false alarm rate (CFAR) method. Then, the output of the softmax layer in the RD spectrum perception network is used to adjust the threshold, improving the robustness and accuracy of the detection process. The RD spectrum perception network is trained jointly using data from the Automatic Identification System (AIS) associated with HFSWR and simulated target-embedded data. Multiple validations and analyses of the proposed detection method are conducted with these datasets. Experimental results demonstrate that the proposed method has good detection performance, outperforming several other existing methods.","PeriodicalId":100645,"journal":{"name":"IEEE Transactions on Radar Systems","volume":"3 ","pages":"379-391"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radar Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10877895/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

High-frequency surface wave radar (HFSWR) is a crucial tool for oceanic remote sensing and surveillance; however, radar target detection is challenged by the presence of background clutter and interference. In response, this article designs a novel dual-scale branch fusion network specifically for detecting target signals in the range-Doppler (RD) spectrum. The network effectively enhances the ability to distinguish between targets and clutter by combining large-scale environmental feature sensing with small-scale target signal structure analysis. Additionally, we propose a novel detection threshold adjustment mechanism based on the RD spectrum perception network. First, an initial detection threshold is calculated using the traditional constant false alarm rate (CFAR) method. Then, the output of the softmax layer in the RD spectrum perception network is used to adjust the threshold, improving the robustness and accuracy of the detection process. The RD spectrum perception network is trained jointly using data from the Automatic Identification System (AIS) associated with HFSWR and simulated target-embedded data. Multiple validations and analyses of the proposed detection method are conducted with these datasets. Experimental results demonstrate that the proposed method has good detection performance, outperforming several other existing methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ClassiGAN: Joint Image Reconstruction and Classification in Computational Microwave Imaging Dual-Channel Joint SAR-Interferometry via Superresolution Spectral Estimation Adaptive LPD Radar Waveform Design With Generative Deep Learning Prototype Features Driven High-Performance Few-Shot Radar Active Jamming Recognition Intelligent Target Detection Method for HFSWR Based on Dual-Scale Branch Fusion Network and Adaptive Threshold Control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1