{"title":"Prediction of Wafer Performance: Use of Functional Outlier Detection and Regression","authors":"Kyusoon Kim;Seunghee Oh;Kiwook Bae;Hee-Seok Oh","doi":"10.1109/ACCESS.2025.3544244","DOIUrl":null,"url":null,"abstract":"Optical emission spectroscopy (OES) data is essential for virtual metrology, enabling accurate predictions of wafer performance in plasma etching processes. This approach not only reduces the need for physical measurements of product quality, leading to significant resource savings, but also supports improved decision-making, particularly in process control and quality assurance. To exploit the consecutive nature of OES data, we propose a prediction method based on a functional approach using multivariate functional partial least squares regression, coupled with dimension reduction and a novel outlier detection technique via functional independent component analysis. The proposed approach improves prediction performance by capturing the continuous nature of OES data and effectively extracting the components that describe the data structure. Numerical experiments, including simulation studies and real-world applications of OES data, demonstrate the effectiveness of the proposed method through superior prediction performance, as evidenced by low RMSE and MAE values, particularly in the presence of outliers.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"35298-35308"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10898005","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10898005/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Optical emission spectroscopy (OES) data is essential for virtual metrology, enabling accurate predictions of wafer performance in plasma etching processes. This approach not only reduces the need for physical measurements of product quality, leading to significant resource savings, but also supports improved decision-making, particularly in process control and quality assurance. To exploit the consecutive nature of OES data, we propose a prediction method based on a functional approach using multivariate functional partial least squares regression, coupled with dimension reduction and a novel outlier detection technique via functional independent component analysis. The proposed approach improves prediction performance by capturing the continuous nature of OES data and effectively extracting the components that describe the data structure. Numerical experiments, including simulation studies and real-world applications of OES data, demonstrate the effectiveness of the proposed method through superior prediction performance, as evidenced by low RMSE and MAE values, particularly in the presence of outliers.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.