Preparation of transparent CO2 copolymer diol and its properties on waterborne polyurethane

IF 2.6 4区 化学 Q3 POLYMER SCIENCE Journal of Polymer Research Pub Date : 2025-02-26 DOI:10.1007/s10965-025-04301-7
Wenqi Xian, Maoyi He, Rui Zheng, Zhu Liu, Ming Lu, Yuehuan Chu, Hao Cao
{"title":"Preparation of transparent CO2 copolymer diol and its properties on waterborne polyurethane","authors":"Wenqi Xian,&nbsp;Maoyi He,&nbsp;Rui Zheng,&nbsp;Zhu Liu,&nbsp;Ming Lu,&nbsp;Yuehuan Chu,&nbsp;Hao Cao","doi":"10.1007/s10965-025-04301-7","DOIUrl":null,"url":null,"abstract":"<div><p>CO<sub>2</sub> copolymer diol (PPCD) with superior transparency is an indispensable raw material for the polyurethane, especially for waterborne polyurethane coatings. However, commercial PPCD is generally opaque. In this work, A sustainable, colorless and transparent PPCD was prepared by using carbon dioxide (CO<sub>2</sub>) and propylene oxide (PO) as raw materials. Research shows that the increase in CO<sub>2</sub> content (from 23.5 wt.% to 31.5 wt.%) will affect the transparency and thermal stability of PPCD and the transparency of PPCD with 29.1 wt.% CO<sub>2</sub> content is even higher than 90%, while the 5 wt.% mass loss temperature reaches 240.1 ℃. Furthermore, a series of waterborne polyurethane (WPU) was successfully synthesized by prepolymer method with PPCD as the soft segment. With the increase of CO<sub>2</sub> content, the thermodynamic property of WPU was significantly improved. When CO<sub>2</sub> content increased from 23.50 wt.% to 31.50 wt.%, the tensile strength increased from 23.27 MPa to 34.63 MPa and the elongation at break decreased from 750.85% to 520.37%, accompanied by the glass-transition temperature increased from -49.7 ℃ to -34.5 ℃. In addition, it was found that WPU prepared by transparent PPCD has better tensile strength, transparency, and storage stability. A new inspiration was provided for its application in the fields of optical components, transparent medical materials and UV curable coatings.</p></div>","PeriodicalId":658,"journal":{"name":"Journal of Polymer Research","volume":"32 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10965-025-04301-7","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

CO2 copolymer diol (PPCD) with superior transparency is an indispensable raw material for the polyurethane, especially for waterborne polyurethane coatings. However, commercial PPCD is generally opaque. In this work, A sustainable, colorless and transparent PPCD was prepared by using carbon dioxide (CO2) and propylene oxide (PO) as raw materials. Research shows that the increase in CO2 content (from 23.5 wt.% to 31.5 wt.%) will affect the transparency and thermal stability of PPCD and the transparency of PPCD with 29.1 wt.% CO2 content is even higher than 90%, while the 5 wt.% mass loss temperature reaches 240.1 ℃. Furthermore, a series of waterborne polyurethane (WPU) was successfully synthesized by prepolymer method with PPCD as the soft segment. With the increase of CO2 content, the thermodynamic property of WPU was significantly improved. When CO2 content increased from 23.50 wt.% to 31.50 wt.%, the tensile strength increased from 23.27 MPa to 34.63 MPa and the elongation at break decreased from 750.85% to 520.37%, accompanied by the glass-transition temperature increased from -49.7 ℃ to -34.5 ℃. In addition, it was found that WPU prepared by transparent PPCD has better tensile strength, transparency, and storage stability. A new inspiration was provided for its application in the fields of optical components, transparent medical materials and UV curable coatings.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Polymer Research
Journal of Polymer Research 化学-高分子科学
CiteScore
4.70
自引率
7.10%
发文量
472
审稿时长
3.6 months
期刊介绍: Journal of Polymer Research provides a forum for the prompt publication of articles concerning the fundamental and applied research of polymers. Its great feature lies in the diversity of content which it encompasses, drawing together results from all aspects of polymer science and technology. As polymer research is rapidly growing around the globe, the aim of this journal is to establish itself as a significant information tool not only for the international polymer researchers in academia but also for those working in industry. The scope of the journal covers a wide range of the highly interdisciplinary field of polymer science and technology, including: polymer synthesis; polymer reactions; polymerization kinetics; polymer physics; morphology; structure-property relationships; polymer analysis and characterization; physical and mechanical properties; electrical and optical properties; polymer processing and rheology; application of polymers; supramolecular science of polymers; polymer composites.
期刊最新文献
Preparation of transparent CO2 copolymer diol and its properties on waterborne polyurethane Designing efficient lithium metal battery using hybrid layered nanoparticles of graphene oxide and MXene and thermoplastic polyurethane-polyethylene oxide blend with high ionic conductivity and stable cycling Conformational changes of two oppositely charged polyelectrolytes, including those combined into a single block copolymer, on the surface of a charged or transversely polarized cylindrical metal nanowire Synthesis and characterization of biodegradable AL-g-poly(AAM) hydrogel-based novel matrix for slow and controlled root-targeted delivery of fertilizers Cationic copolymerization of isobutylene and bio-renewable β-myrcene towards sustainable elastomers: synthesis and mechanism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1