Calcium sulfate microparticle size modification for improved alginate hydrogel fabrication and its application in 3D cell culture

IF 2.5 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Frontiers of Materials Science Pub Date : 2025-02-27 DOI:10.1007/s11706-025-0713-4
Joo Ho Kim, Siddharth Iyer, Christian Tessman, Shashank Vummidi Lakshman, Heemin Kang, Luo Gu
{"title":"Calcium sulfate microparticle size modification for improved alginate hydrogel fabrication and its application in 3D cell culture","authors":"Joo Ho Kim,&nbsp;Siddharth Iyer,&nbsp;Christian Tessman,&nbsp;Shashank Vummidi Lakshman,&nbsp;Heemin Kang,&nbsp;Luo Gu","doi":"10.1007/s11706-025-0713-4","DOIUrl":null,"url":null,"abstract":"<div><p>Calcium ion-crosslinked alginate hydrogels are widely used as a materials system for investigating cell behavior in 3D environments <i>in vitro</i>. Suspensions of calcium sulfate particles are often used as the source of Ca<sup>2+</sup> to control the rate of gelation. However, the instability of calcium sulfate suspensions can increase chances of reduced homogeneity of the resulting gel and requires researcher’s proficiency. Here, we show that ball-milled calcium sulfate microparticles (MPs) with smaller sizes can create more stable crosslinker suspensions than unprocessed or simply autoclaved calcium sulfate particles. In particular, 15 µm ball-milled calcium sulfate MPs result in gels that are more homogeneous with a balanced gelation rate, which facilitates fabrication of gels with consistent mechanical properties and reliable performance for 3D cell culture. Overall, these MPs represent an improved method for alginate hydrogel fabrication that can increase experimental reliability and quality for 3D cell culture.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"19 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11706-025-0713-4","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Calcium ion-crosslinked alginate hydrogels are widely used as a materials system for investigating cell behavior in 3D environments in vitro. Suspensions of calcium sulfate particles are often used as the source of Ca2+ to control the rate of gelation. However, the instability of calcium sulfate suspensions can increase chances of reduced homogeneity of the resulting gel and requires researcher’s proficiency. Here, we show that ball-milled calcium sulfate microparticles (MPs) with smaller sizes can create more stable crosslinker suspensions than unprocessed or simply autoclaved calcium sulfate particles. In particular, 15 µm ball-milled calcium sulfate MPs result in gels that are more homogeneous with a balanced gelation rate, which facilitates fabrication of gels with consistent mechanical properties and reliable performance for 3D cell culture. Overall, these MPs represent an improved method for alginate hydrogel fabrication that can increase experimental reliability and quality for 3D cell culture.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers of Materials Science
Frontiers of Materials Science MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
4.20
自引率
3.70%
发文量
515
期刊介绍: Frontiers of Materials Science is a peer-reviewed international journal that publishes high quality reviews/mini-reviews, full-length research papers, and short Communications recording the latest pioneering studies on all aspects of materials science. It aims at providing a forum to promote communication and exchange between scientists in the worldwide materials science community. The subjects are seen from international and interdisciplinary perspectives covering areas including (but not limited to): Biomaterials including biomimetics and biomineralization; Nano materials; Polymers and composites; New metallic materials; Advanced ceramics; Materials modeling and computation; Frontier materials synthesis and characterization; Novel methods for materials manufacturing; Materials performance; Materials applications in energy, information and biotechnology.
期刊最新文献
Calcium sulfate microparticle size modification for improved alginate hydrogel fabrication and its application in 3D cell culture Development of collagen and nano-hydroxyapatite-based novel self-healing cartilage Optimization of process parameters for TC11 alloy via tailoring scanning strategy in laser powder bed fusion Application of SEM-CL system in the characterization of material microstructures Quantifying functional groups in the active layer of polyamide nanofiltration membranes via the dye adsorption method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1