Li Zhang, Xuefeng Zheng, Pengbo Du, Hanbin Qu, Shujun Cai
{"title":"An Ultra-Wideband GaN PA MMIC With High-Efficiency","authors":"Li Zhang, Xuefeng Zheng, Pengbo Du, Hanbin Qu, Shujun Cai","doi":"10.1002/mop.70151","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this work, a three-stage ultra-wideband and high-efficiency monolithic microwave integrated circuit (MMIC) power amplifier (PA) from 17 to 41 GHz has been designed and realized. The available bandwidth, efficiency, output power, and drain voltage of the transistor have been thoroughly considered during the PA design. Additionally, the gate peripheries of the driving stage ratio are set as 1:1.5 to prevent premature saturation of the driving stage. Pulse measurements show that the PA has a saturated output power greater than 1.2 W across 83% of the fractional bandwidth (FBW). The power gain is over 15 dB with less than 1 dB variation, and it reaches a peak output power and PAE of 32.5 dBm and 33%, respectively. This PA presents notable wideband performance and advantages in comparison with other PAs in previous works.</p>\n </div>","PeriodicalId":18562,"journal":{"name":"Microwave and Optical Technology Letters","volume":"67 3","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microwave and Optical Technology Letters","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mop.70151","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, a three-stage ultra-wideband and high-efficiency monolithic microwave integrated circuit (MMIC) power amplifier (PA) from 17 to 41 GHz has been designed and realized. The available bandwidth, efficiency, output power, and drain voltage of the transistor have been thoroughly considered during the PA design. Additionally, the gate peripheries of the driving stage ratio are set as 1:1.5 to prevent premature saturation of the driving stage. Pulse measurements show that the PA has a saturated output power greater than 1.2 W across 83% of the fractional bandwidth (FBW). The power gain is over 15 dB with less than 1 dB variation, and it reaches a peak output power and PAE of 32.5 dBm and 33%, respectively. This PA presents notable wideband performance and advantages in comparison with other PAs in previous works.
期刊介绍:
Microwave and Optical Technology Letters provides quick publication (3 to 6 month turnaround) of the most recent findings and achievements in high frequency technology, from RF to optical spectrum. The journal publishes original short papers and letters on theoretical, applied, and system results in the following areas.
- RF, Microwave, and Millimeter Waves
- Antennas and Propagation
- Submillimeter-Wave and Infrared Technology
- Optical Engineering
All papers are subject to peer review before publication