Mini Review on the Lyophilization: A Basic Requirement for Formulation Development and Stability Modifier.

IF 1.6 4区 医学 Q4 BIOCHEMICAL RESEARCH METHODS Assay and drug development technologies Pub Date : 2025-02-26 DOI:10.1089/adt.2024.122
Sachin Joshi, Priya Jindal, Shreastha Gautam, Charanjeet Singh, Preeti Patel, Ghanshyam Das Gupta, Balak Das Kurmi
{"title":"Mini Review on the Lyophilization: A Basic Requirement for Formulation Development and Stability Modifier.","authors":"Sachin Joshi, Priya Jindal, Shreastha Gautam, Charanjeet Singh, Preeti Patel, Ghanshyam Das Gupta, Balak Das Kurmi","doi":"10.1089/adt.2024.122","DOIUrl":null,"url":null,"abstract":"<p><p>\n <i>Freeze-drying is popular for producing pharmaceutical formulations with structurally complicated active components and drug delivery system carriers. It is the process of eliminating water from ice crystals through the sublimation mechanism. Some formulations may require drug-specific excipients such as stabilizers, buffers, and bulking agents to maintain the appearance and assure the long-term stability of the drug product. This approach is utilized for therapeutic compounds that are moisture sensitive, thermolabile, and degrade in the atmosphere. Freezing and primary and secondary drying are critical processes in the lyophilization process because they directly impact the end result. This approach is effective for producing a variety of dosage forms, including oral, inhalation, and parenteral. As a result, lyophilization may be an important method for improving the therapeutic efficacy and delivery of various dosage forms delivered via different routes. Additionally, lyophilization is used in pharmacological research to preserve biological samples, stabilize reference/standards, and increase the solubility and bioavailability of poorly soluble drugs. Thus, lyophilization is critical for maintaining the stability, efficacy, and safety of pharmaceutical products throughout their development and lifecycles. This article includes a broad overview of the lyophilization process, principle, excipients for lyophilized medicine compositions, and new lyophilization technologies as well as their applications in a variety of fields.</i>\n </p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Assay and drug development technologies","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/adt.2024.122","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Freeze-drying is popular for producing pharmaceutical formulations with structurally complicated active components and drug delivery system carriers. It is the process of eliminating water from ice crystals through the sublimation mechanism. Some formulations may require drug-specific excipients such as stabilizers, buffers, and bulking agents to maintain the appearance and assure the long-term stability of the drug product. This approach is utilized for therapeutic compounds that are moisture sensitive, thermolabile, and degrade in the atmosphere. Freezing and primary and secondary drying are critical processes in the lyophilization process because they directly impact the end result. This approach is effective for producing a variety of dosage forms, including oral, inhalation, and parenteral. As a result, lyophilization may be an important method for improving the therapeutic efficacy and delivery of various dosage forms delivered via different routes. Additionally, lyophilization is used in pharmacological research to preserve biological samples, stabilize reference/standards, and increase the solubility and bioavailability of poorly soluble drugs. Thus, lyophilization is critical for maintaining the stability, efficacy, and safety of pharmaceutical products throughout their development and lifecycles. This article includes a broad overview of the lyophilization process, principle, excipients for lyophilized medicine compositions, and new lyophilization technologies as well as their applications in a variety of fields.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
冻干微型综述:冻干:配方开发和稳定性改良剂的基本要求
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Assay and drug development technologies
Assay and drug development technologies 医学-生化研究方法
CiteScore
3.60
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: ASSAY and Drug Development Technologies provides access to novel techniques and robust tools that enable critical advances in early-stage screening. This research published in the Journal leads to important therapeutics and platforms for drug discovery and development. This reputable peer-reviewed journal features original papers application-oriented technology reviews, topical issues on novel and burgeoning areas of research, and reports in methodology and technology application. ASSAY and Drug Development Technologies coverage includes: -Assay design, target development, and high-throughput technologies- Hit to Lead optimization and medicinal chemistry through preclinical candidate selection- Lab automation, sample management, bioinformatics, data mining, virtual screening, and data analysis- Approaches to assays configured for gene families, inherited, and infectious diseases- Assays and strategies for adapting model organisms to drug discovery- The use of stem cells as models of disease- Translation of phenotypic outputs to target identification- Exploration and mechanistic studies of the technical basis for assay and screening artifacts
期刊最新文献
Mini Review on the Lyophilization: A Basic Requirement for Formulation Development and Stability Modifier. Investigating the Role of Buzhong Yiqi Decoction on Neurogenic Bladder with Network Pharmacology, Molecular Docking, and In Vitro Assays. Glycerosomes: Versatile Carriers for Multi-Route Drug Delivery Systems. Roadmap to Cytotoxicity: Exploring Assays and Mechanisms. Development and Characterization of Oral Efavirenz-Loaded Nanostructured Lipid Carriers and Their Optimization with Box-Behnken Design Approach for the Neurological Disorder.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1