Defect dynamics in cholesterics: beyond the Peach-Koehler force.

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL Soft Matter Pub Date : 2025-02-26 DOI:10.1039/d4sm01478b
Joseph Pollard, Richard G Morris
{"title":"Defect dynamics in cholesterics: beyond the Peach-Koehler force.","authors":"Joseph Pollard, Richard G Morris","doi":"10.1039/d4sm01478b","DOIUrl":null,"url":null,"abstract":"<p><p>The Peach-Koehler force between disclination lines was originally formulated in the study of crystalline solids, and has since been adopted to provide a notion of interactions between disclination lines in nematic liquid crystals. Here, we argue that the standard formulation of this interaction force seemingly fails for materials where there is a symmetry-broken ground state, and suggest that this is due to the interaction between disclination lines and merons: non-singular yet non-trivial topological solitons. We examine this in the context of chiral nematic (cholesteric) liquid crystals, which provide a natural setting for studying these interactions due to their energetic preference for meron tubes in the form of double-twist cylinders. Through a combination of theory and simulation we demonstrate that, for sufficiently strong chirality, defects of +1/2 winding will change their winding through the emission of a meron line, and that interactions between the merons and defects dominate over defect-defect interactions. Instead of the Peach-Koehler framework, we employ a method based on contact topology-the Gray stability theorem-to directly calculate the velocity field of the material. We apply our framework to point defects as well as disclination lines. Our results have implications not just for chiral materials, but also for other phases with modulated ground states, such as the twist-bend and splay-bend nematics.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sm01478b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The Peach-Koehler force between disclination lines was originally formulated in the study of crystalline solids, and has since been adopted to provide a notion of interactions between disclination lines in nematic liquid crystals. Here, we argue that the standard formulation of this interaction force seemingly fails for materials where there is a symmetry-broken ground state, and suggest that this is due to the interaction between disclination lines and merons: non-singular yet non-trivial topological solitons. We examine this in the context of chiral nematic (cholesteric) liquid crystals, which provide a natural setting for studying these interactions due to their energetic preference for meron tubes in the form of double-twist cylinders. Through a combination of theory and simulation we demonstrate that, for sufficiently strong chirality, defects of +1/2 winding will change their winding through the emission of a meron line, and that interactions between the merons and defects dominate over defect-defect interactions. Instead of the Peach-Koehler framework, we employ a method based on contact topology-the Gray stability theorem-to directly calculate the velocity field of the material. We apply our framework to point defects as well as disclination lines. Our results have implications not just for chiral materials, but also for other phases with modulated ground states, such as the twist-bend and splay-bend nematics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Soft Matter
Soft Matter 工程技术-材料科学:综合
CiteScore
6.00
自引率
5.90%
发文量
891
审稿时长
1.9 months
期刊介绍: Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.
期刊最新文献
Back cover A refined mechanistic model for swelling kinetics of starch granules. Correction: Room-temperature ferroelectric nematic liquid crystal showing a large and diverging density. Defect dynamics in cholesterics: beyond the Peach-Koehler force. Hybrid phytoglycogen-dopamine nanoparticles as biodegradable underwater adhesives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1