Ana Paula Soares, Dario Paiva, Alberto Lema, Diana R Pereira, Ana Cláudia Rodrigues, Helena Mendes Oliveira
{"title":"Speech Stream Composition Affects Statistical Learning: Behavioral and Neural Evidence.","authors":"Ana Paula Soares, Dario Paiva, Alberto Lema, Diana R Pereira, Ana Cláudia Rodrigues, Helena Mendes Oliveira","doi":"10.3390/brainsci15020198","DOIUrl":null,"url":null,"abstract":"<p><p>Statistical learning (SL), the ability to extract patterns from the environment, has been assumed to play a central role in whole cognition, particularly in language acquisition. Evidence has been gathered, however, from behavioral experiments relying on simplified artificial languages, raising doubts on the generalizability of these results to natural contexts. Here, we tested if SL is affected by the composition of the speech streams by expositing participants to auditory streams containing either four nonsense words presenting a transitional probability (TP) of 1 (unmixed high-TP condition), four nonsense words presenting TPs of 0.33 (unmixed low-TP condition) or two nonsense words presenting a TP of 1, and two of a TP of 0.33 (mixed condition); first under incidental (implicit), and, subsequently, under intentional (explicit) conditions to further ascertain how prior knowledge modulates the results. Electrophysiological and behavioral data were collected from the familiarization and test phases of each of the SL tasks. Behavior results revealed reliable signs of SL for all the streams, even though differences across stream conditions failed to reach significance. The neural results revealed, however, facilitative processing of the mixed over the unmixed low-TP and the unmixed high-TP conditions in the N400 and P200 components, suggesting that moderate levels of entropy boost SL.</p>","PeriodicalId":9095,"journal":{"name":"Brain Sciences","volume":"15 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852644/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/brainsci15020198","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Statistical learning (SL), the ability to extract patterns from the environment, has been assumed to play a central role in whole cognition, particularly in language acquisition. Evidence has been gathered, however, from behavioral experiments relying on simplified artificial languages, raising doubts on the generalizability of these results to natural contexts. Here, we tested if SL is affected by the composition of the speech streams by expositing participants to auditory streams containing either four nonsense words presenting a transitional probability (TP) of 1 (unmixed high-TP condition), four nonsense words presenting TPs of 0.33 (unmixed low-TP condition) or two nonsense words presenting a TP of 1, and two of a TP of 0.33 (mixed condition); first under incidental (implicit), and, subsequently, under intentional (explicit) conditions to further ascertain how prior knowledge modulates the results. Electrophysiological and behavioral data were collected from the familiarization and test phases of each of the SL tasks. Behavior results revealed reliable signs of SL for all the streams, even though differences across stream conditions failed to reach significance. The neural results revealed, however, facilitative processing of the mixed over the unmixed low-TP and the unmixed high-TP conditions in the N400 and P200 components, suggesting that moderate levels of entropy boost SL.
期刊介绍:
Brain Sciences (ISSN 2076-3425) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications in the areas of cognitive neuroscience, developmental neuroscience, molecular and cellular neuroscience, neural engineering, neuroimaging, neurolinguistics, neuropathy, systems neuroscience, and theoretical and computational neuroscience. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.