Gallic acid enhances honeybee larvae resistance to Paenibacillus larvae infections: Insights from molecular docking, bacterial community modulation, and whole-genome sequencing.
Man-Hong Ye, Yin-Hong Jiang, Xiao-Yuan Li, Qian-Nan Han, Chuang Meng, Feng Ji, Bin Zhou
{"title":"Gallic acid enhances honeybee larvae resistance to Paenibacillus larvae infections: Insights from molecular docking, bacterial community modulation, and whole-genome sequencing.","authors":"Man-Hong Ye, Yin-Hong Jiang, Xiao-Yuan Li, Qian-Nan Han, Chuang Meng, Feng Ji, Bin Zhou","doi":"10.1111/1744-7917.70000","DOIUrl":null,"url":null,"abstract":"<p><p>American foulbrood (AFB) disease, caused by the bacterium Paenibacillus larvae, is a devastating disease affecting honeybee (Apis mellifera L.) populations worldwide. Commonly treated with antibiotics, which have negative impacts on both honeybees and the environment, there is an urgent need for alternatives in AFB control. This study aimed to investigate the effects of gallic acid (GA) on honeybee larvae challenged with P. larvae spores and explore its modulation of larval microbiota. Our results demonstrated that in the presence of P. larvae spores, coadministration of 125 µg/mL GA significantly increased the survival rate and body weight of honeybee larvae. Molecular docking analyses revealed that GA competitively binds to spore germination proteins YndE and GerM, with affinities comparable to L-tyrosine and stronger than uric acid, respectively, suggesting interference with P. larvae spore germination. 16S rRNA gene amplicon sequencing revealed that GA treatment augmented bacterial diversity and enriched lactic acid bacteria (LAB) in honeybee larvae. Whole-genome sequencing of 2 LAB strains, Apilactobacillus kunkeei GL-2 and Enterococcus faecium GL-6, isolated from GA-treated larvae, unveiled their potential to produce antimicrobial secondary metabolites and bacteriocins, which may contribute to their competitive advantages against P. larvae. Notably, the E. faecium GL-6 strain possessed genes encoding gallate decarboxylase, enabling GA utilization, and 2 putative bacteriocinogenic genetic clusters for enterolysin A and enterocin L50 a/b. These findings suggest that GA and the GL-6 strain hold potential as preventive measures against AFB disease in honeybees through modulation of gut microbiota and competitive inhibition of P. larvae.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/1744-7917.70000","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
American foulbrood (AFB) disease, caused by the bacterium Paenibacillus larvae, is a devastating disease affecting honeybee (Apis mellifera L.) populations worldwide. Commonly treated with antibiotics, which have negative impacts on both honeybees and the environment, there is an urgent need for alternatives in AFB control. This study aimed to investigate the effects of gallic acid (GA) on honeybee larvae challenged with P. larvae spores and explore its modulation of larval microbiota. Our results demonstrated that in the presence of P. larvae spores, coadministration of 125 µg/mL GA significantly increased the survival rate and body weight of honeybee larvae. Molecular docking analyses revealed that GA competitively binds to spore germination proteins YndE and GerM, with affinities comparable to L-tyrosine and stronger than uric acid, respectively, suggesting interference with P. larvae spore germination. 16S rRNA gene amplicon sequencing revealed that GA treatment augmented bacterial diversity and enriched lactic acid bacteria (LAB) in honeybee larvae. Whole-genome sequencing of 2 LAB strains, Apilactobacillus kunkeei GL-2 and Enterococcus faecium GL-6, isolated from GA-treated larvae, unveiled their potential to produce antimicrobial secondary metabolites and bacteriocins, which may contribute to their competitive advantages against P. larvae. Notably, the E. faecium GL-6 strain possessed genes encoding gallate decarboxylase, enabling GA utilization, and 2 putative bacteriocinogenic genetic clusters for enterolysin A and enterocin L50 a/b. These findings suggest that GA and the GL-6 strain hold potential as preventive measures against AFB disease in honeybees through modulation of gut microbiota and competitive inhibition of P. larvae.
期刊介绍:
Insect Science is an English-language journal, which publishes original research articles dealing with all fields of research in into insects and other terrestrial arthropods. Papers in any of the following fields will be considered: ecology, behavior, biogeography, physiology, biochemistry, sociobiology, phylogeny, pest management, and exotic incursions. The emphasis of the journal is on the adaptation and evolutionary biology of insects from the molecular to the ecosystem level. Reviews, mini reviews and letters to the editor, book reviews, and information about academic activities of the society are also published.