Yuling Feng, Nayeli Escudero Castelán, Mohammed Akhter Hossain, Hongkang Wu, Hidekazu Katayama, Stuart J Smith, Scott F Cummins, Masatoshi Mita, Ross A D Bathgate, Maurice R Elphick
{"title":"Receptor deorphanization in starfish reveals the evolution of relaxin signaling as a regulator of reproduction.","authors":"Yuling Feng, Nayeli Escudero Castelán, Mohammed Akhter Hossain, Hongkang Wu, Hidekazu Katayama, Stuart J Smith, Scott F Cummins, Masatoshi Mita, Ross A D Bathgate, Maurice R Elphick","doi":"10.1186/s12915-025-02158-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Relaxins are a family of peptides that regulate reproductive physiology in vertebrates. Evidence that this is an evolutionarily ancient role of relaxins has been provided by the discovery of two relaxin-like gonad-stimulating peptides (RGP1 and RGP2) that trigger spawning in starfish. The main aim of this study was to identify the receptor(s) that mediate(s) the effects of RGP1 and RGP2 in starfish.</p><p><strong>Results: </strong>Here we show that RGP1 and RGP2 belong to a family of peptides that include vertebrate relaxins, Drosophila insulin-like peptide 8 (Dilp8), and other relaxin-like peptides in several protostome taxa. An ortholog of the human relaxin receptors RXFP1 and RXFP2 and the Drosophila receptor LGR3 was identified in starfish (RXFP/LGR3). In Drosophila, but not in humans and other vertebrates, there is a paralog of LGR3 known as LGR4, and here an LGR4-type receptor was also identified in starfish. In vitro pharmacological experiments revealed that both RGP1 and RGP2 act as ligands for RXFP/LGR3 in the starfish Acanthaster cf. solaris and Asterias rubens, but neither peptide acts as a ligand for LGR4 in these species.</p><p><strong>Conclusions: </strong>Discovery of the RXFP/LGR3-type receptor for RGP1 and RGP2 in starfish provides a new insight into the evolution of relaxin-type signaling as a regulator of reproductive processes. Furthermore, our findings indicate that RXFP/LGR3-type receptors have been lost in several phyla, including urochordates, mollusks, bryozoans, platyhelminthes, and nematodes.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"23 1","pages":"59"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11863921/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12915-025-02158-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Relaxins are a family of peptides that regulate reproductive physiology in vertebrates. Evidence that this is an evolutionarily ancient role of relaxins has been provided by the discovery of two relaxin-like gonad-stimulating peptides (RGP1 and RGP2) that trigger spawning in starfish. The main aim of this study was to identify the receptor(s) that mediate(s) the effects of RGP1 and RGP2 in starfish.
Results: Here we show that RGP1 and RGP2 belong to a family of peptides that include vertebrate relaxins, Drosophila insulin-like peptide 8 (Dilp8), and other relaxin-like peptides in several protostome taxa. An ortholog of the human relaxin receptors RXFP1 and RXFP2 and the Drosophila receptor LGR3 was identified in starfish (RXFP/LGR3). In Drosophila, but not in humans and other vertebrates, there is a paralog of LGR3 known as LGR4, and here an LGR4-type receptor was also identified in starfish. In vitro pharmacological experiments revealed that both RGP1 and RGP2 act as ligands for RXFP/LGR3 in the starfish Acanthaster cf. solaris and Asterias rubens, but neither peptide acts as a ligand for LGR4 in these species.
Conclusions: Discovery of the RXFP/LGR3-type receptor for RGP1 and RGP2 in starfish provides a new insight into the evolution of relaxin-type signaling as a regulator of reproductive processes. Furthermore, our findings indicate that RXFP/LGR3-type receptors have been lost in several phyla, including urochordates, mollusks, bryozoans, platyhelminthes, and nematodes.
期刊介绍:
BMC Biology is a broad scope journal covering all areas of biology. Our content includes research articles, new methods and tools. BMC Biology also publishes reviews, Q&A, and commentaries.