Confocal Laser Endomicroscopy: Enhancing Intraoperative Decision Making in Neurosurgery.

IF 3 3区 医学 Q1 MEDICINE, GENERAL & INTERNAL Diagnostics Pub Date : 2025-02-19 DOI:10.3390/diagnostics15040499
Francesco Carbone, Nicola Pio Fochi, Giuseppe Di Perna, Arthur Wagner, Jürgen Schlegel, Elena Ranieri, Uwe Spetzger, Daniele Armocida, Fabio Cofano, Diego Garbossa, Augusto Leone, Antonio Colamaria
{"title":"Confocal Laser Endomicroscopy: Enhancing Intraoperative Decision Making in Neurosurgery.","authors":"Francesco Carbone, Nicola Pio Fochi, Giuseppe Di Perna, Arthur Wagner, Jürgen Schlegel, Elena Ranieri, Uwe Spetzger, Daniele Armocida, Fabio Cofano, Diego Garbossa, Augusto Leone, Antonio Colamaria","doi":"10.3390/diagnostics15040499","DOIUrl":null,"url":null,"abstract":"<p><p>Brain tumors, both primary and metastatic, represent a significant global health burden due to their high incidence, mortality, and the severe neurological deficits they frequently cause. Gliomas, especially high-grade gliomas (HGGs), rank among the most aggressive and lethal neoplasms, with only modest gains in long-term survival despite extensive molecular research and established standard therapies. In neurosurgical practice, maximizing the extent of safe resection is a principal strategy for improving clinical outcomes. Yet, the infiltrative nature of gliomas often complicates the accurate delineation of tumor margins. Confocal laser endomicroscopy (CLE), originally introduced in gastroenterology, has recently gained prominence in neuro-oncology by enabling real-time, high-resolution cellular imaging during surgery. This technique allows for intraoperative tumor characterization and reduces dependence on time-consuming frozen-section analyses. Recent technological advances, including device miniaturization and second-generation CLE systems, have substantially improved image quality and diagnostic utility. Furthermore, integration with deep learning algorithms and telepathology platforms fosters automated image interpretation and remote expert consultations, thereby accelerating surgical decision making and enhancing diagnostic consistency. Future work should address remaining challenges, such as mitigating motion artifacts, refining training protocols, and broadening the range of applicable fluorescent probes, to solidify CLE's role as a critical intraoperative adjunct in neurosurgical oncology.</p>","PeriodicalId":11225,"journal":{"name":"Diagnostics","volume":"15 4","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/diagnostics15040499","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Brain tumors, both primary and metastatic, represent a significant global health burden due to their high incidence, mortality, and the severe neurological deficits they frequently cause. Gliomas, especially high-grade gliomas (HGGs), rank among the most aggressive and lethal neoplasms, with only modest gains in long-term survival despite extensive molecular research and established standard therapies. In neurosurgical practice, maximizing the extent of safe resection is a principal strategy for improving clinical outcomes. Yet, the infiltrative nature of gliomas often complicates the accurate delineation of tumor margins. Confocal laser endomicroscopy (CLE), originally introduced in gastroenterology, has recently gained prominence in neuro-oncology by enabling real-time, high-resolution cellular imaging during surgery. This technique allows for intraoperative tumor characterization and reduces dependence on time-consuming frozen-section analyses. Recent technological advances, including device miniaturization and second-generation CLE systems, have substantially improved image quality and diagnostic utility. Furthermore, integration with deep learning algorithms and telepathology platforms fosters automated image interpretation and remote expert consultations, thereby accelerating surgical decision making and enhancing diagnostic consistency. Future work should address remaining challenges, such as mitigating motion artifacts, refining training protocols, and broadening the range of applicable fluorescent probes, to solidify CLE's role as a critical intraoperative adjunct in neurosurgical oncology.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Diagnostics
Diagnostics Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
4.70
自引率
8.30%
发文量
2699
审稿时长
19.64 days
期刊介绍: Diagnostics (ISSN 2075-4418) is an international scholarly open access journal on medical diagnostics. It publishes original research articles, reviews, communications and short notes on the research and development of medical diagnostics. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodological details must be provided for research articles.
期刊最新文献
Performance of Large Language Models ChatGPT and Gemini on Workplace Management Questions in Radiology. Pitfalls in Ultrasound Diagnosis of Vascular Malformations: A Retrospective Review of 14 Nonvascular Tumors Treated as Vascular Malformations. Epidemiology of Celiac Disease in Cantabria, Spain. Adult Congenital Heart Disease in Serbia: Insights from a Single-Center Registry. Comparative Clinical and Histopathological Study of Oral Leukoplakia in Smokers and Non-Smokers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1