Extracellular vesicles secreted by leukemic cells as mediators of dysregulated hematopoiesis: acute myeloid leukemia as a case in point.

IF 2.3 4区 医学 Q2 HEMATOLOGY Expert Review of Hematology Pub Date : 2025-02-26 DOI:10.1080/17474086.2025.2471860
Vishakha Kasherwal, Vaijayanti Kale, Anuradha Vaidya
{"title":"Extracellular vesicles secreted by leukemic cells as mediators of dysregulated hematopoiesis: acute myeloid leukemia as a case in point.","authors":"Vishakha Kasherwal, Vaijayanti Kale, Anuradha Vaidya","doi":"10.1080/17474086.2025.2471860","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Acute myeloid leukemia (AML) cells exhibit a profound capacity for resistance to conventional chemotherapeutic agents, posing a substantial challenge to existing therapeutic paradigms. Interestingly, this happens in the face of a luxuriant proliferation of leukemic blasts in the peripheral blood. This paradox of concurrent proliferative activity and cellular quiescence underscores a complex biological phenomenon that is intricately mediated by AML-derived Extracellular vesicles (EVs).</p><p><strong>Areas covered: </strong>An extensive literature review search was done on Pubmed/Scopus/Web of Sciences databases to identify studies published between 2013 and 2024 elucidating and demonstrating the effect of AML-derived EVs, Microvesicles (MVs) and Exosomes (Exos) in regulating the normal and dysregulated bone marrow (BM) niche.</p><p><strong>Expert opinion: </strong>The review delves into understanding the molecular mechanisms underlying the dual behavior of AML cells - proliferation and quiescence, with a special focus on the role of the EVs and their subtypes viz. Exos and MVs in establishing a discrete BM microenvironment that is subversive to chemotherapy. It offers a novel perspective on the intricate interplay between the leukemic cells and their microenvironment, with implications for therapeutic interventions targeting AML persistence and drug resistance.</p>","PeriodicalId":12325,"journal":{"name":"Expert Review of Hematology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Review of Hematology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17474086.2025.2471860","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Acute myeloid leukemia (AML) cells exhibit a profound capacity for resistance to conventional chemotherapeutic agents, posing a substantial challenge to existing therapeutic paradigms. Interestingly, this happens in the face of a luxuriant proliferation of leukemic blasts in the peripheral blood. This paradox of concurrent proliferative activity and cellular quiescence underscores a complex biological phenomenon that is intricately mediated by AML-derived Extracellular vesicles (EVs).

Areas covered: An extensive literature review search was done on Pubmed/Scopus/Web of Sciences databases to identify studies published between 2013 and 2024 elucidating and demonstrating the effect of AML-derived EVs, Microvesicles (MVs) and Exosomes (Exos) in regulating the normal and dysregulated bone marrow (BM) niche.

Expert opinion: The review delves into understanding the molecular mechanisms underlying the dual behavior of AML cells - proliferation and quiescence, with a special focus on the role of the EVs and their subtypes viz. Exos and MVs in establishing a discrete BM microenvironment that is subversive to chemotherapy. It offers a novel perspective on the intricate interplay between the leukemic cells and their microenvironment, with implications for therapeutic interventions targeting AML persistence and drug resistance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.70
自引率
3.60%
发文量
98
审稿时长
6-12 weeks
期刊介绍: Advanced molecular research techniques have transformed hematology in recent years. With improved understanding of hematologic diseases, we now have the opportunity to research and evaluate new biological therapies, new drugs and drug combinations, new treatment schedules and novel approaches including stem cell transplantation. We can also expect proteomics, molecular genetics and biomarker research to facilitate new diagnostic approaches and the identification of appropriate therapies. Further advances in our knowledge regarding the formation and function of blood cells and blood-forming tissues should ensue, and it will be a major challenge for hematologists to adopt these new paradigms and develop integrated strategies to define the best possible patient care. Expert Review of Hematology (1747-4086) puts these advances in context and explores how they will translate directly into clinical practice.
期刊最新文献
Extracellular vesicles secreted by leukemic cells as mediators of dysregulated hematopoiesis: acute myeloid leukemia as a case in point. Modulation of the endocannabinoid system in chronic conditions: a potential therapeutic intervention yet to be explored in sickle cell disease. The influence of lymphoid enhancer binding factor-1 expression on the outcome of adult acute promyelocytic leukemia patients. The past, the present and the future of immune checkpoints inhibitors in multiple myeloma. Problems faced by people with hemophilia aged 18-35 years in social life: a qualitative study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1