Moss-pathogen interactions: a review of the current status and future opportunities.

IF 2.8 3区 生物学 Q2 GENETICS & HEREDITY Frontiers in Genetics Pub Date : 2025-02-11 eCollection Date: 2025-01-01 DOI:10.3389/fgene.2025.1539311
Huan Zhang, Qilin Yang, Leyi Wang, Huawei Liu, Daoyuan Zhang, Cheng-Guo Duan, Xiaoshuang Li
{"title":"Moss-pathogen interactions: a review of the current status and future opportunities.","authors":"Huan Zhang, Qilin Yang, Leyi Wang, Huawei Liu, Daoyuan Zhang, Cheng-Guo Duan, Xiaoshuang Li","doi":"10.3389/fgene.2025.1539311","DOIUrl":null,"url":null,"abstract":"<p><p>In complex and diverse environments, plants face constant challenges from various pathogens, including fungi, bacteria, and viruses, which can severely impact their growth, development, and survival. Mosses, representing early divergent lineages of land plants, lack traditional vascular systems yet demonstrate remarkable adaptability across diverse habitats. While sharing the fundamental innate immune systems common to all land plants, mosses have evolved distinct chemical and physical defense mechanisms. Notably, they exhibit resistance to many pathogens that typically affect vascular plants. Their evolutionary significance, relatively simple morphology, and well-conserved defense mechanisms make mosses excellent model organisms for studying plant-pathogen interactions. This article reviews current research on moss-pathogen interactions, examining host-pathogen specificity, characterizing infection phenotypes and physiological responses, and comparing pathogen susceptibility and defense mechanisms between mosses and angiosperms. Through this analysis, we aim to deepen our understanding of plant immune system evolution and potentially inform innovative approaches to enhancing crop disease resistance.</p>","PeriodicalId":12750,"journal":{"name":"Frontiers in Genetics","volume":"16 ","pages":"1539311"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850516/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fgene.2025.1539311","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

In complex and diverse environments, plants face constant challenges from various pathogens, including fungi, bacteria, and viruses, which can severely impact their growth, development, and survival. Mosses, representing early divergent lineages of land plants, lack traditional vascular systems yet demonstrate remarkable adaptability across diverse habitats. While sharing the fundamental innate immune systems common to all land plants, mosses have evolved distinct chemical and physical defense mechanisms. Notably, they exhibit resistance to many pathogens that typically affect vascular plants. Their evolutionary significance, relatively simple morphology, and well-conserved defense mechanisms make mosses excellent model organisms for studying plant-pathogen interactions. This article reviews current research on moss-pathogen interactions, examining host-pathogen specificity, characterizing infection phenotypes and physiological responses, and comparing pathogen susceptibility and defense mechanisms between mosses and angiosperms. Through this analysis, we aim to deepen our understanding of plant immune system evolution and potentially inform innovative approaches to enhancing crop disease resistance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Genetics
Frontiers in Genetics Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
5.50
自引率
8.10%
发文量
3491
审稿时长
14 weeks
期刊介绍: Frontiers in Genetics publishes rigorously peer-reviewed research on genes and genomes relating to all the domains of life, from humans to plants to livestock and other model organisms. Led by an outstanding Editorial Board of the world’s leading experts, this multidisciplinary, open-access journal is at the forefront of communicating cutting-edge research to researchers, academics, clinicians, policy makers and the public. The study of inheritance and the impact of the genome on various biological processes is well documented. However, the majority of discoveries are still to come. A new era is seeing major developments in the function and variability of the genome, the use of genetic and genomic tools and the analysis of the genetic basis of various biological phenomena.
期刊最新文献
EDN1 and NTF3 in keloid pathogenesis: computational and experimental evidence as novel diagnostic biomarkers for fibrosis and inflammation. High-throughput microRNA sequencing in the developing branchial arches suggests miR-92b-3p regulation of a cardiovascular gene network. Calculating maternal polygenic risk scores from prenatal screening by cell-free DNA data. Comprehensive systematic review and meta-analysis of the TGF-β1 T869C gene polymorphism and autoimmune disease susceptibility. Correlation and clinical significance of GSTP1 hypermethylation in hepatocellular carcinoma: a systematic review and meta-analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1