Jun-Hyuk Choi , Eun-Song Lee , Hoi-In Jung , Baek-Il Kim
{"title":"Caries prevention effects of nano silver fluoride sustained release orthodontic elastomerics in dental microcosm biofilms","authors":"Jun-Hyuk Choi , Eun-Song Lee , Hoi-In Jung , Baek-Il Kim","doi":"10.1016/j.jdent.2025.105649","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><div>To evaluate the clinical applicability of nano silver fluoride sustained release orthodontic elastomerics (NSF-RE) by investigating its effects on inhibiting biofilm formation and enamel demineralization using dental microcosm biofilms.</div></div><div><h3>Methods</h3><div>Two types of 23 % NSF coating solutions were prepared depending on the presence or absence of the plasticizer (polyethylene glycol [PEG] 6000: NSF-EP and NSF-E); the elastomerics were dip-coated individually with these. Biofilms were allowed to form on bovine enamel specimens with the elastomerics. Biofilm maturity (red/green ratio) was measured. After 7 days, biofilm thickness, live/dead cell ratio, and cell viability were evaluated. Microbiome taxonomic profiling was conducted on days 3 and 7. Mineral loss beneath the biofilm was quantified from fluorescence loss (ΔF) and ΔF<sub>max</sub> values obtained. Demineralization at varying distances from the specimen center was evaluated based on the difference in ΔF between the control and experimental groups.</div></div><div><h3>Results</h3><div>The NSF-EP (elastomerics treated with NSF coating containing PEG) had a 6.7 % significantly lower R/G ratio from day 3 and a 36.1 % thinner biofilm compared to the negative control with uncoated elastomerics. In the NSF-EP group, cell viability assessments indicated reductions in total and aciduric bacterial counts by 9.4 % and 13.0 %, respectively. NSF-EP also had the lowest relative abundance of five caries-related bacteria. Additionally, NSF-EP significantly increased ΔF and ΔF<sub>max</sub> by 34.8 % and 38.7 %, respectively, indicating reduced mineral loss. Demineralization did not differ according to distance from the elastomerics.</div></div><div><h3>Conclusion</h3><div>NSF-RE significantly reduces biofilm formation and demineralization, offering a promising caries prevention strategy in orthodontic patients.</div></div><div><h3>Clinical significance</h3><div>By inhibiting both biofilm formation and demineralization, NSF-RE provides a dual-function approach that may effectively prevent dental caries in orthodontic patients.</div></div>","PeriodicalId":15585,"journal":{"name":"Journal of dentistry","volume":"156 ","pages":"Article 105649"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of dentistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300571225000946","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives
To evaluate the clinical applicability of nano silver fluoride sustained release orthodontic elastomerics (NSF-RE) by investigating its effects on inhibiting biofilm formation and enamel demineralization using dental microcosm biofilms.
Methods
Two types of 23 % NSF coating solutions were prepared depending on the presence or absence of the plasticizer (polyethylene glycol [PEG] 6000: NSF-EP and NSF-E); the elastomerics were dip-coated individually with these. Biofilms were allowed to form on bovine enamel specimens with the elastomerics. Biofilm maturity (red/green ratio) was measured. After 7 days, biofilm thickness, live/dead cell ratio, and cell viability were evaluated. Microbiome taxonomic profiling was conducted on days 3 and 7. Mineral loss beneath the biofilm was quantified from fluorescence loss (ΔF) and ΔFmax values obtained. Demineralization at varying distances from the specimen center was evaluated based on the difference in ΔF between the control and experimental groups.
Results
The NSF-EP (elastomerics treated with NSF coating containing PEG) had a 6.7 % significantly lower R/G ratio from day 3 and a 36.1 % thinner biofilm compared to the negative control with uncoated elastomerics. In the NSF-EP group, cell viability assessments indicated reductions in total and aciduric bacterial counts by 9.4 % and 13.0 %, respectively. NSF-EP also had the lowest relative abundance of five caries-related bacteria. Additionally, NSF-EP significantly increased ΔF and ΔFmax by 34.8 % and 38.7 %, respectively, indicating reduced mineral loss. Demineralization did not differ according to distance from the elastomerics.
Conclusion
NSF-RE significantly reduces biofilm formation and demineralization, offering a promising caries prevention strategy in orthodontic patients.
Clinical significance
By inhibiting both biofilm formation and demineralization, NSF-RE provides a dual-function approach that may effectively prevent dental caries in orthodontic patients.
期刊介绍:
The Journal of Dentistry has an open access mirror journal The Journal of Dentistry: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The Journal of Dentistry is the leading international dental journal within the field of Restorative Dentistry. Placing an emphasis on publishing novel and high-quality research papers, the Journal aims to influence the practice of dentistry at clinician, research, industry and policy-maker level on an international basis.
Topics covered include the management of dental disease, periodontology, endodontology, operative dentistry, fixed and removable prosthodontics, dental biomaterials science, long-term clinical trials including epidemiology and oral health, technology transfer of new scientific instrumentation or procedures, as well as clinically relevant oral biology and translational research.
The Journal of Dentistry will publish original scientific research papers including short communications. It is also interested in publishing review articles and leaders in themed areas which will be linked to new scientific research. Conference proceedings are also welcome and expressions of interest should be communicated to the Editor.