{"title":"A Comprehensive Analysis of FGF/FGFR Signaling Alteration in NSCLC: Implications in Prognosis and Microenvironment.","authors":"Ziling Huang, Leyao Li, Xu Cai, Shen Wang, Yun Jia, Yuan Li","doi":"10.1111/1759-7714.70016","DOIUrl":null,"url":null,"abstract":"<p><p>Fibroblast Growth Factor (FGF) ligands and their receptor have been identified as the potent target in non-small cell lung cancer (NSCLC). However, the clinicopathological and microenvironmental characteristics of FGF/FGFR in NSCLC remain poorly elucidated. Here, we summarize 4656 NSCLCs and analyze clinicopathological features in 478 FGF/FGFR altered cases. AI analysis and multiplex immunofluorescence staining are used to reveal microenvironment features. First, around 10.27% NSCLC carry FGF/FGFR variant. Squamous cell carcinoma (41.95%) is much more than adenocarcinoma (8.32%). In 118 pathogenic variant (PV) cases, the most frequent variant is FGF/FGFR copy number increase (83.05%), the second is FGFR gene fusion (11.86%). Surprisingly, CCND1 always co-amplifies with FGF19 (100.00%). Furthermore, FGF PV is an independent risk factor for poor outcomes (overall survival: HR = 3.781, disease-free survival: HR = 3.340). And one-third of FGFR3-TACC3 fusion cases show clear cytoplasm in histology. Either CCND1/FGF19 co-amplification or KRAS co-mutation is closely related to cigarette exposure, and KRAS co-mutation acts as an independent factor of poor prognosis. Finally, the FGF/FGFR1/NOTCH1 within RB1 variant group has a remarkably high ratio of inner-tumor CD8+ T cell infiltration, non-exhausted T cells, exhausted T<sup>CD8+PD-1+LAG3-</sup> cells, and T<sub>RM</sub> <sup>CD8+CD69+CD103+</sup>cells. Overall, this study provides a comprehensive analysis of FGF/FGFR alteration in NSCLC. The FGF/FGFR alteration mainly arises in squamous cell carcinoma. Both FGF PV and KRAS are the independent factors for poor prognosis. To our knowledge, this is the first report to describe an inflamed microenvironment recruited by NOTCH1/RB1 co-mutation, indicating potential benefit from immunotherapy.</p>","PeriodicalId":23338,"journal":{"name":"Thoracic Cancer","volume":"16 4","pages":"e70016"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11860276/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thoracic Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/1759-7714.70016","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Fibroblast Growth Factor (FGF) ligands and their receptor have been identified as the potent target in non-small cell lung cancer (NSCLC). However, the clinicopathological and microenvironmental characteristics of FGF/FGFR in NSCLC remain poorly elucidated. Here, we summarize 4656 NSCLCs and analyze clinicopathological features in 478 FGF/FGFR altered cases. AI analysis and multiplex immunofluorescence staining are used to reveal microenvironment features. First, around 10.27% NSCLC carry FGF/FGFR variant. Squamous cell carcinoma (41.95%) is much more than adenocarcinoma (8.32%). In 118 pathogenic variant (PV) cases, the most frequent variant is FGF/FGFR copy number increase (83.05%), the second is FGFR gene fusion (11.86%). Surprisingly, CCND1 always co-amplifies with FGF19 (100.00%). Furthermore, FGF PV is an independent risk factor for poor outcomes (overall survival: HR = 3.781, disease-free survival: HR = 3.340). And one-third of FGFR3-TACC3 fusion cases show clear cytoplasm in histology. Either CCND1/FGF19 co-amplification or KRAS co-mutation is closely related to cigarette exposure, and KRAS co-mutation acts as an independent factor of poor prognosis. Finally, the FGF/FGFR1/NOTCH1 within RB1 variant group has a remarkably high ratio of inner-tumor CD8+ T cell infiltration, non-exhausted T cells, exhausted TCD8+PD-1+LAG3- cells, and TRMCD8+CD69+CD103+cells. Overall, this study provides a comprehensive analysis of FGF/FGFR alteration in NSCLC. The FGF/FGFR alteration mainly arises in squamous cell carcinoma. Both FGF PV and KRAS are the independent factors for poor prognosis. To our knowledge, this is the first report to describe an inflamed microenvironment recruited by NOTCH1/RB1 co-mutation, indicating potential benefit from immunotherapy.
期刊介绍:
Thoracic Cancer aims to facilitate international collaboration and exchange of comprehensive and cutting-edge information on basic, translational, and applied clinical research in lung cancer, esophageal cancer, mediastinal cancer, breast cancer and other thoracic malignancies. Prevention, treatment and research relevant to Asia-Pacific is a focus area, but submissions from all regions are welcomed. The editors encourage contributions relevant to prevention, general thoracic surgery, medical oncology, radiology, radiation medicine, pathology, basic cancer research, as well as epidemiological and translational studies in thoracic cancer. Thoracic Cancer is the official publication of the Chinese Society of Lung Cancer, International Chinese Society of Thoracic Surgery and is endorsed by the Korean Association for the Study of Lung Cancer and the Hong Kong Cancer Therapy Society.
The Journal publishes a range of article types including: Editorials, Invited Reviews, Mini Reviews, Original Articles, Clinical Guidelines, Technological Notes, Imaging in thoracic cancer, Meeting Reports, Case Reports, Letters to the Editor, Commentaries, and Brief Reports.