[Research on intelligent fetal heart monitoring model based on deep active learning].

Bin Quan, Yajing Huang, Yanfang Li, Qinqun Chen, Honglai Zhang, Li Li, Guiqing Liu, Hang Wei
{"title":"[Research on intelligent fetal heart monitoring model based on deep active learning].","authors":"Bin Quan, Yajing Huang, Yanfang Li, Qinqun Chen, Honglai Zhang, Li Li, Guiqing Liu, Hang Wei","doi":"10.7507/1001-5515.202402012","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiotocography (CTG) is a non-invasive and important tool for diagnosing fetal distress during pregnancy. To meet the needs of intelligent fetal heart monitoring based on deep learning, this paper proposes a TWD-MOAL deep active learning algorithm based on the three-way decision (TWD) theory and multi-objective optimization Active Learning (MOAL). During the training process of a convolutional neural network (CNN) classification model, the algorithm incorporates the TWD theory to select high-confidence samples as pseudo-labeled samples in a fine-grained batch processing mode, meanwhile low-confidence samples annotated by obstetrics experts were also considered. The TWD-MOAL algorithm proposed in this paper was validated on a dataset of 16 355 prenatal CTG records collected by our group. Experimental results showed that the algorithm proposed in this paper achieved an accuracy of 80.63% using only 40% of the labeled samples, and in terms of various indicators, it performed better than the existing active learning algorithms under other frameworks. The study has shown that the intelligent fetal heart monitoring model based on TWD-MOAL proposed in this paper is reasonable and feasible. The algorithm significantly reduces the time and cost of labeling by obstetric experts and effectively solves the problem of data imbalance in CTG signal data in clinic, which is of great significance for assisting obstetrician in interpretations CTG signals and realizing intelligence fetal monitoring.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"42 1","pages":"57-64"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物医学工程学杂志","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.7507/1001-5515.202402012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Cardiotocography (CTG) is a non-invasive and important tool for diagnosing fetal distress during pregnancy. To meet the needs of intelligent fetal heart monitoring based on deep learning, this paper proposes a TWD-MOAL deep active learning algorithm based on the three-way decision (TWD) theory and multi-objective optimization Active Learning (MOAL). During the training process of a convolutional neural network (CNN) classification model, the algorithm incorporates the TWD theory to select high-confidence samples as pseudo-labeled samples in a fine-grained batch processing mode, meanwhile low-confidence samples annotated by obstetrics experts were also considered. The TWD-MOAL algorithm proposed in this paper was validated on a dataset of 16 355 prenatal CTG records collected by our group. Experimental results showed that the algorithm proposed in this paper achieved an accuracy of 80.63% using only 40% of the labeled samples, and in terms of various indicators, it performed better than the existing active learning algorithms under other frameworks. The study has shown that the intelligent fetal heart monitoring model based on TWD-MOAL proposed in this paper is reasonable and feasible. The algorithm significantly reduces the time and cost of labeling by obstetric experts and effectively solves the problem of data imbalance in CTG signal data in clinic, which is of great significance for assisting obstetrician in interpretations CTG signals and realizing intelligence fetal monitoring.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
生物医学工程学杂志
生物医学工程学杂志 Medicine-Medicine (all)
CiteScore
0.80
自引率
0.00%
发文量
4868
期刊介绍:
期刊最新文献
[The joint analysis of heart health and mental health based on continual learning]. [Three-dimensional human-robot mechanics modeling for dual-arm nursing-care robot transfer based on individualized musculoskeletal multibody dynamics]. [A review of deep learning methods for non-contact heart rate measurement based on facial videos]. [Audiovisual emotion recognition based on a multi-head cross attention mechanism]. [Biomechanical effects of medial and lateral translation deviations of femoral components in unicompartmental knee arthroplasty on tibial prosthesis fixation].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1