Manuel Andreas Staggl, Carlos De Gracia, Faviel A López-Romero, Sebastian Stumpf, Eduardo Villalobos-Segura, Michael J Benton, Jürgen Kriwet
{"title":"The Drivers of Mesozoic Neoselachian Success and Resilience.","authors":"Manuel Andreas Staggl, Carlos De Gracia, Faviel A López-Romero, Sebastian Stumpf, Eduardo Villalobos-Segura, Michael J Benton, Jürgen Kriwet","doi":"10.3390/biology14020142","DOIUrl":null,"url":null,"abstract":"<p><p>The modern diversity of sharks, skates, and rays (Neoselachii) is the result of various diversification and extinction events during the Mesozoic (252-66 Ma). However, the key drivers of their diversity patterns remain poorly understood despite all the progress that has been accomplished in recent years. Here, we show that the interplay of climatic- and tectonic-linked trajectories, resulting in a high shallow marine habitat availability and lower atmospheric CO<sub>2</sub> concentration, were significant drivers and sustainers of Mesozoic neoselachian diversity. We show, for the first time, that higher atmospheric CO<sub>2</sub> content negatively affected neoselachian diversity in the past. The recognized gradual faunal changes throughout the Mesozoic and the two major diversification events during the Jurassic and Cretaceous, respectively, ultimately cumulated in an all-time diversity high in the Palaeogene despite the events during the end-Cretaceous extinction event, highlighting their remarkable resilience and adaptability despite severe environmental challenges. We thus provide novel perspectives on the processes underlying neoselachian diversification since the Mesozoic that contribute importantly to a better understanding of the selective forces that have shaped the long-term evolution and diversification of neoselachians. Given their vital role in modern ecosystems, our results provide information about possible future trends in the face of the current climate crisis.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 2","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852107/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology14020142","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The modern diversity of sharks, skates, and rays (Neoselachii) is the result of various diversification and extinction events during the Mesozoic (252-66 Ma). However, the key drivers of their diversity patterns remain poorly understood despite all the progress that has been accomplished in recent years. Here, we show that the interplay of climatic- and tectonic-linked trajectories, resulting in a high shallow marine habitat availability and lower atmospheric CO2 concentration, were significant drivers and sustainers of Mesozoic neoselachian diversity. We show, for the first time, that higher atmospheric CO2 content negatively affected neoselachian diversity in the past. The recognized gradual faunal changes throughout the Mesozoic and the two major diversification events during the Jurassic and Cretaceous, respectively, ultimately cumulated in an all-time diversity high in the Palaeogene despite the events during the end-Cretaceous extinction event, highlighting their remarkable resilience and adaptability despite severe environmental challenges. We thus provide novel perspectives on the processes underlying neoselachian diversification since the Mesozoic that contribute importantly to a better understanding of the selective forces that have shaped the long-term evolution and diversification of neoselachians. Given their vital role in modern ecosystems, our results provide information about possible future trends in the face of the current climate crisis.
期刊介绍:
Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.