New Insights into Antiviral Natural Formulations: Biopolymeric Films for the Prevention and Treatment of a Wide Gamma of Viral Infections.

IF 3.8 3区 医学 Q2 VIROLOGY Viruses-Basel Pub Date : 2025-02-01 DOI:10.3390/v17020216
Victoria Belén Ayala-Peña, Ana Karen Jaimes, Ana Lucía Conesa, Cybele Carina García, Claudia Soledad Sepulveda, Fernando Gaspar Dellatorre, Ezequiel Latour, Nora Marta Andrea Ponce, Vera Alejandra Álvarez, Verónica Leticia Lassalle
{"title":"New Insights into Antiviral Natural Formulations: Biopolymeric Films for the Prevention and Treatment of a Wide Gamma of Viral Infections.","authors":"Victoria Belén Ayala-Peña, Ana Karen Jaimes, Ana Lucía Conesa, Cybele Carina García, Claudia Soledad Sepulveda, Fernando Gaspar Dellatorre, Ezequiel Latour, Nora Marta Andrea Ponce, Vera Alejandra Álvarez, Verónica Leticia Lassalle","doi":"10.3390/v17020216","DOIUrl":null,"url":null,"abstract":"<p><p>Viral infections remain a major concern, as existing treatments often yield inadequate responses or lead to the development of antiviral resistance in some cases. Fucoidan extracted from <i>Undaria pinnatifida</i> (F) is a natural sulphated polysaccharide that exhibits antiviral action. Despite its potential, the biomedical application of F is limited due to its difficult administration through trans-mucosal, skin, or oral ingestion. The most effective way to solve these problems is to propose novel methods of administration aiming to ensure better contact between the biopolymers and pathogens, leading to their inactivation. In this work, the synthesis of films based on chitosan (Ch)-coupled F is reported, aiming to generate a synergic effect between both biopolymers in terms of their antiviral and antioxidant capability. Biocomposites were prepared by a sonochemical method. They were characterized to infer structural properties, functionality, and possible F-Ch interactions by using Zeta potential, FTIR, and XRD techniques. The biocomposites showed excellent film-forming ability. They also exhibited improved antioxidant activity with respect to F and Ch individually and proved to be non-cytotoxic. These results demonstrate, for the first time, the antiviral activity of F:Ch biocomposites against bovine coronavirus and human viruses (adenovirus, poliovirus, herpes simplex, and respiratory syncytial virus), which could be applied in film form to prevent or treat viral infections.</p>","PeriodicalId":49328,"journal":{"name":"Viruses-Basel","volume":"17 2","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11861794/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Viruses-Basel","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/v17020216","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Viral infections remain a major concern, as existing treatments often yield inadequate responses or lead to the development of antiviral resistance in some cases. Fucoidan extracted from Undaria pinnatifida (F) is a natural sulphated polysaccharide that exhibits antiviral action. Despite its potential, the biomedical application of F is limited due to its difficult administration through trans-mucosal, skin, or oral ingestion. The most effective way to solve these problems is to propose novel methods of administration aiming to ensure better contact between the biopolymers and pathogens, leading to their inactivation. In this work, the synthesis of films based on chitosan (Ch)-coupled F is reported, aiming to generate a synergic effect between both biopolymers in terms of their antiviral and antioxidant capability. Biocomposites were prepared by a sonochemical method. They were characterized to infer structural properties, functionality, and possible F-Ch interactions by using Zeta potential, FTIR, and XRD techniques. The biocomposites showed excellent film-forming ability. They also exhibited improved antioxidant activity with respect to F and Ch individually and proved to be non-cytotoxic. These results demonstrate, for the first time, the antiviral activity of F:Ch biocomposites against bovine coronavirus and human viruses (adenovirus, poliovirus, herpes simplex, and respiratory syncytial virus), which could be applied in film form to prevent or treat viral infections.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
抗病毒天然制剂的新见解:用于预防和治疗多种病毒感染的生物聚合物薄膜。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Viruses-Basel
Viruses-Basel VIROLOGY-
CiteScore
7.30
自引率
12.80%
发文量
2445
审稿时长
1 months
期刊介绍: Viruses (ISSN 1999-4915) is an open access journal which provides an advanced forum for studies of viruses. It publishes reviews, regular research papers, communications, conference reports and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. We also encourage the publication of timely reviews and commentaries on topics of interest to the virology community and feature highlights from the virology literature in the ''News and Views'' section. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
期刊最新文献
Correction: Fan et al. A Human DPP4-Knockin Mouse's Susceptibility to Infection by Authentic and Pseudotyped MERS-CoV. Viruses 2018, 10, 448. Correction: Gajurel et al. Arbovirus in Solid Organ Transplants: A Narrative Review of the Literature. Viruses 2024, 16, 1778. Phylogenetic Analysis of Varicella-Zoster Virus in Cerebrospinal Fluid from Individuals with Acute Central Nervous System Infection: An Exploratory Study. Towards a Universal Translator: Decoding the PTMs That Regulate Orthoflavivirus Infection. PRV-1 Virulence in Atlantic Salmon Is Affected by Host Genotype.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1