{"title":"<i>Alternaria alternata</i> JTF001 Metabolites Recruit Beneficial Microorganisms to Reduce the Parasitism of <i>Orobanche aegyptiaca</i> in Tomato.","authors":"Wenfang Luo, Xingxing Ping, Junhui Zhou, Shuaijun Gao, Xin Huang, Suqin Song, Jianjun Xu, Wei He","doi":"10.3390/biology14020116","DOIUrl":null,"url":null,"abstract":"<p><p><i>Orobanche aegyptiaca</i> is a holoparasitic weed that extracts water, nutrients, and growth regulators from host plants, leading to significant yield and quality losses. Biocontrol microbial metabolites have been shown to enhance plant resistance against parasitic plants, yet the underlying microbial mechanisms remain poorly understood. In this study, we investigated the role of <i>Alternaria alternata</i> JTF001 (J1) microbial metabolites in recruiting beneficial microbes to the tomato rhizosphere and promoting the establishment of a disease-suppressive microbiome. Pot experiments revealed that J1 metabolite application significantly reduced <i>O. aegyptiaca</i> parasitism. High-throughput sequencing of full-length 16S rRNA genes and ITS regions, along with in vitro culture assays, demonstrated an increase in the abundance of plant-beneficial bacteria, particularly <i>Pseudomonas</i> spp. The three candidate beneficial strains (zOTU_388, zOTU_533, and zOTU_2335) showed an increase of 5.7-fold, 5.4-fold, and 4.7-fold, respectively. These results indicate that J1 metabolites induce the recruitment of a disease-suppressive microbiome in tomato seedlings, effectively inhibiting <i>O. aegyptiaca</i> parasitism. Our findings suggest that microbial metabolites represent a promising strategy for managing parasitic plant infestations through microbial community modulation, offering significant implications for sustainable agricultural practices.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 2","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851891/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology14020116","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Orobanche aegyptiaca is a holoparasitic weed that extracts water, nutrients, and growth regulators from host plants, leading to significant yield and quality losses. Biocontrol microbial metabolites have been shown to enhance plant resistance against parasitic plants, yet the underlying microbial mechanisms remain poorly understood. In this study, we investigated the role of Alternaria alternata JTF001 (J1) microbial metabolites in recruiting beneficial microbes to the tomato rhizosphere and promoting the establishment of a disease-suppressive microbiome. Pot experiments revealed that J1 metabolite application significantly reduced O. aegyptiaca parasitism. High-throughput sequencing of full-length 16S rRNA genes and ITS regions, along with in vitro culture assays, demonstrated an increase in the abundance of plant-beneficial bacteria, particularly Pseudomonas spp. The three candidate beneficial strains (zOTU_388, zOTU_533, and zOTU_2335) showed an increase of 5.7-fold, 5.4-fold, and 4.7-fold, respectively. These results indicate that J1 metabolites induce the recruitment of a disease-suppressive microbiome in tomato seedlings, effectively inhibiting O. aegyptiaca parasitism. Our findings suggest that microbial metabolites represent a promising strategy for managing parasitic plant infestations through microbial community modulation, offering significant implications for sustainable agricultural practices.
期刊介绍:
Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.