Tiphaine Charmillot, Nathalie Chèvre, Nicolas Senn
{"title":"Developing an Ecotoxicological Classification for Frequently Used Drugs in Primary Care.","authors":"Tiphaine Charmillot, Nathalie Chèvre, Nicolas Senn","doi":"10.3390/ijerph22020290","DOIUrl":null,"url":null,"abstract":"<p><p>Most drugs excreted in urine are not filtered by wastewater treatment plants and end up in aquatic systems. At concentrations measured in waters, toxic effects on species have been described. Second, most of the drug consumption is attributable to primary care prescriptions. We thus present here, an ecotoxicity classification of the most sold drugs in primary care in Switzerland. Three datasets were combined: (1) surveyed ecotoxic drugs by the Swiss National Surface Water Quality Monitoring Programme and its European equivalent, (2) the top 50 drugs by sale in primary care in Switzerland, and (3) active pharmaceutical ingredient (API) concentrations in Lake Geneva and the rivers of the canton of Vaud between 2017 and 2022. We classified APIs into five categories from the safest to the least safe: (1) APIs found in concentrations (C) <10× their environmental quality standard (EQS·10<sup>-1</sup>), (2) EQS·10<sup>-1</sup> < C < EQS and not listed by the Swiss or the EU Watch List, (3) EQS·10<sup>-1</sup> < C < EQS and listed, (4) C > EQS and not listed, and (5) C > EQS and listed. We obtained full ecotoxicological data for 35 APIs. Fifteen APIs were designated as safe (category (1):paracetamol, tramadol, amisulpride, citalopram, mirtazapine, metformin, gabapentin, lamotrigine, primidone, candesartan, irbesartan, atenolol, hydrochlorothiazide, ofloxacin, sulfadiazine), eleven as intermediately safe, and nine were of concern (azithromycin, ciprofloxacin, clarithromycin, sulfamethoxazole, carbamazepine, diclofenac, ibuprofen, iomeprol, iopromide). Full data were available for only one-third of the drugs most sold in primary care. Where data do exist, we observed significant differences in environmental impact among the same class of drugs. Our classification could therefore help guide doctors to adopt more eco-friendly prescriptions.</p>","PeriodicalId":49056,"journal":{"name":"International Journal of Environmental Research and Public Health","volume":"22 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11855898/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Environmental Research and Public Health","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/ijerph22020290","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Most drugs excreted in urine are not filtered by wastewater treatment plants and end up in aquatic systems. At concentrations measured in waters, toxic effects on species have been described. Second, most of the drug consumption is attributable to primary care prescriptions. We thus present here, an ecotoxicity classification of the most sold drugs in primary care in Switzerland. Three datasets were combined: (1) surveyed ecotoxic drugs by the Swiss National Surface Water Quality Monitoring Programme and its European equivalent, (2) the top 50 drugs by sale in primary care in Switzerland, and (3) active pharmaceutical ingredient (API) concentrations in Lake Geneva and the rivers of the canton of Vaud between 2017 and 2022. We classified APIs into five categories from the safest to the least safe: (1) APIs found in concentrations (C) <10× their environmental quality standard (EQS·10-1), (2) EQS·10-1 < C < EQS and not listed by the Swiss or the EU Watch List, (3) EQS·10-1 < C < EQS and listed, (4) C > EQS and not listed, and (5) C > EQS and listed. We obtained full ecotoxicological data for 35 APIs. Fifteen APIs were designated as safe (category (1):paracetamol, tramadol, amisulpride, citalopram, mirtazapine, metformin, gabapentin, lamotrigine, primidone, candesartan, irbesartan, atenolol, hydrochlorothiazide, ofloxacin, sulfadiazine), eleven as intermediately safe, and nine were of concern (azithromycin, ciprofloxacin, clarithromycin, sulfamethoxazole, carbamazepine, diclofenac, ibuprofen, iomeprol, iopromide). Full data were available for only one-third of the drugs most sold in primary care. Where data do exist, we observed significant differences in environmental impact among the same class of drugs. Our classification could therefore help guide doctors to adopt more eco-friendly prescriptions.
期刊介绍:
International Journal of Environmental Research and Public Health (IJERPH) (ISSN 1660-4601) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes, and short communications in the interdisciplinary area of environmental health sciences and public health. It links several scientific disciplines including biology, biochemistry, biotechnology, cellular and molecular biology, chemistry, computer science, ecology, engineering, epidemiology, genetics, immunology, microbiology, oncology, pathology, pharmacology, and toxicology, in an integrated fashion, to address critical issues related to environmental quality and public health. Therefore, IJERPH focuses on the publication of scientific and technical information on the impacts of natural phenomena and anthropogenic factors on the quality of our environment, the interrelationships between environmental health and the quality of life, as well as the socio-cultural, political, economic, and legal considerations related to environmental stewardship and public health.
The 2018 IJERPH Outstanding Reviewer Award has been launched! This award acknowledge those who have generously dedicated their time to review manuscripts submitted to IJERPH. See full details at http://www.mdpi.com/journal/ijerph/awards.