Yan Chen, Kaitai Song, Huizhong Hu, Haiyan Wang, Xinqiang Zheng
{"title":"Varietal Differences in the Environmental Behavior of <sup>14</sup>C-Caffeine in Tea Plants: Accumulation, Subcellular Distribution, and Metabolism.","authors":"Yan Chen, Kaitai Song, Huizhong Hu, Haiyan Wang, Xinqiang Zheng","doi":"10.3390/biology14020177","DOIUrl":null,"url":null,"abstract":"<p><p>Caffeine contamination in water sources raises concerns about its transfer to agricultural products and potential risks to human health through the food chain. Despite these concerns, limited research has focused on the accumulation and distribution of exogenous caffeine in tea plants. This study explored the uptake, translocation, targeted accumulation, subcellular distribution, and preliminary metabolism of <sup>14</sup>C-labeled caffeine in a hydroponic tea seedling system. After 192 h of cultivation, more than 83.8% of the caffeine had been removed from the nutrient solution. Within the plants, <sup>14</sup>C-caffeine and its metabolites predominantly accumulated in the roots. Subcellular analysis indicates that in root cells, <sup>14</sup>C was mainly distributed in the soluble fraction, cell walls, and plastids, while in shoot cells, it was concentrated in the soluble fraction and cell walls. Metabolic profiling reveals distinct varietal differences: in Longjing 43 tea seedlings, <sup>14</sup>C was predominantly present as the caffeine parent compound, whereas in Jiaming No. 1 tea seedlings, <sup>14</sup>C was found both as the parent compound and as its metabolite, xanthine. This study revealed differences in the uptake, translocation, and metabolism of exogenous caffeine among different tea plant varieties, providing broader insights into the impact of caffeine pollution on agricultural ecosystems.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 2","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851553/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology14020177","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Caffeine contamination in water sources raises concerns about its transfer to agricultural products and potential risks to human health through the food chain. Despite these concerns, limited research has focused on the accumulation and distribution of exogenous caffeine in tea plants. This study explored the uptake, translocation, targeted accumulation, subcellular distribution, and preliminary metabolism of 14C-labeled caffeine in a hydroponic tea seedling system. After 192 h of cultivation, more than 83.8% of the caffeine had been removed from the nutrient solution. Within the plants, 14C-caffeine and its metabolites predominantly accumulated in the roots. Subcellular analysis indicates that in root cells, 14C was mainly distributed in the soluble fraction, cell walls, and plastids, while in shoot cells, it was concentrated in the soluble fraction and cell walls. Metabolic profiling reveals distinct varietal differences: in Longjing 43 tea seedlings, 14C was predominantly present as the caffeine parent compound, whereas in Jiaming No. 1 tea seedlings, 14C was found both as the parent compound and as its metabolite, xanthine. This study revealed differences in the uptake, translocation, and metabolism of exogenous caffeine among different tea plant varieties, providing broader insights into the impact of caffeine pollution on agricultural ecosystems.
期刊介绍:
Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.