Predicting the Impact of Climate Change on the Distribution of North China Leopards (Panthera pardus japonensis) in Gansu Province Using MaxEnt Modeling.
{"title":"Predicting the Impact of Climate Change on the Distribution of North China Leopards (<i>Panthera pardus japonensis</i>) in Gansu Province Using MaxEnt Modeling.","authors":"Yongqiang Yang, Wenjie Gao, Yapeng Han, Tianlin Zhou","doi":"10.3390/biology14020126","DOIUrl":null,"url":null,"abstract":"<p><p>Climate change has a profound impact on the phenology and growth of vegetation, which in turn influences the distribution and behavior of animal communities, including prey species. This dynamic shift significantly affects predator survival and activities. This study utilizes the MaxEnt model to explore how climate change impacts the distribution of the North China leopard (<i>Panthera pardus japonensis</i>) in the Ziwuling region of Gansu Province, China. As an endemic subspecies and apex predator, the North China leopard is vital for maintaining the structure and function of local ecosystems. Unfortunately, its population faces several threats, including habitat change, interspecies competition, and human encroachment, all of which are compounded by the ongoing effects of climate change. To assess the requirement and quality of habitat for this species, we conducted a population survey in the Ziwuling area from May 2020 to June 2022, utilizing 240 infrared cameras, which identified 46 active leopard sites. Using the MaxEnt model, we simulated habitat suitability and future distribution under different climate change scenarios based on nine environmental variables. Our results indicate that the population distribution of North China leopards is primarily influenced by the mean diurnal range (Bio2), with additional sensitivity to isothermal conditions (Bio3), temperature seasonality (Bio4), maximum temperature of the warmest month (Bio5), and annual temperature range (Bio7). We also evaluated habitat suitability across three socioeconomic pathways (SSP126, SSP245, and SSP585) for three time intervals: the 2050s (2041-2060), the 2070s (2061-2080), and the 2090s (2081-2100). The findings suggest a significant decline in high-suitability habitat for North China leopards, while areas of medium and low suitability are projected to increase. Understanding these distributional changes in North China leopards will enhance our comprehension of the region's biogeography and inform conservation strategies aimed at mitigating the impacts of climate change.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 2","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851872/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology14020126","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Climate change has a profound impact on the phenology and growth of vegetation, which in turn influences the distribution and behavior of animal communities, including prey species. This dynamic shift significantly affects predator survival and activities. This study utilizes the MaxEnt model to explore how climate change impacts the distribution of the North China leopard (Panthera pardus japonensis) in the Ziwuling region of Gansu Province, China. As an endemic subspecies and apex predator, the North China leopard is vital for maintaining the structure and function of local ecosystems. Unfortunately, its population faces several threats, including habitat change, interspecies competition, and human encroachment, all of which are compounded by the ongoing effects of climate change. To assess the requirement and quality of habitat for this species, we conducted a population survey in the Ziwuling area from May 2020 to June 2022, utilizing 240 infrared cameras, which identified 46 active leopard sites. Using the MaxEnt model, we simulated habitat suitability and future distribution under different climate change scenarios based on nine environmental variables. Our results indicate that the population distribution of North China leopards is primarily influenced by the mean diurnal range (Bio2), with additional sensitivity to isothermal conditions (Bio3), temperature seasonality (Bio4), maximum temperature of the warmest month (Bio5), and annual temperature range (Bio7). We also evaluated habitat suitability across three socioeconomic pathways (SSP126, SSP245, and SSP585) for three time intervals: the 2050s (2041-2060), the 2070s (2061-2080), and the 2090s (2081-2100). The findings suggest a significant decline in high-suitability habitat for North China leopards, while areas of medium and low suitability are projected to increase. Understanding these distributional changes in North China leopards will enhance our comprehension of the region's biogeography and inform conservation strategies aimed at mitigating the impacts of climate change.
期刊介绍:
Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.