Kun Huang, Achala Pokhrel, Jing Echesabal-Chen, Justin Scott, Terri Bruce, Hanjoong Jo, Alexis Stamatikos
{"title":"Inhibiting MiR-33a-3p Expression Fails to Enhance ApoAI-Mediated Cholesterol Efflux in Pro-Inflammatory Endothelial Cells.","authors":"Kun Huang, Achala Pokhrel, Jing Echesabal-Chen, Justin Scott, Terri Bruce, Hanjoong Jo, Alexis Stamatikos","doi":"10.3390/medicina61020329","DOIUrl":null,"url":null,"abstract":"<p><p><i>Background and Objectives</i>: Atherosclerosis is an inflammatory condition that results in cholesterol accumulating within vessel wall cells. Atherosclerotic cardiovascular disease is the leading cause of mortality worldwide due to this disease being a major contributor to myocardial infarctions and cerebrovascular accidents. Research suggests that cholesterol accumulation occurring precisely within arterial endothelial cells triggers atherogenesis and exacerbates atherosclerosis. Furthermore, inflamed endothelium acts as a catalyst for atherosclerotic development. Therefore, enhancing cholesterol removal specifically in pro-inflammatory endothelial cells may be a potential treatment option for atherosclerosis. While we have previously shown that inhibiting the microRNA guide strand miR-33a-5p within pro-inflammatory endothelial cells increases both ABCA1 expression and apoAI-mediated cholesterol efflux, it is unknown whether inhibiting the miR-33a-3p passenger strand in pro-inflammatory endothelial cells causes similar atheroprotective effects. In this study, this is what we aimed to test. <i>Materials and Methods</i>: We used plasmid transfection to knockdown miR-33a-3p expression within cultured pro-inflammatory immortalized mouse aortic endothelial cells (iMAECs). We compared ABCA1 expression and apoAI-mediated cholesterol efflux within these cells to cultured pro-inflammatory iMAECs transfected with a control plasmid. <i>Results</i>: The knockdown of miR-33a-3p expression within pro-inflammatory iMAECs resulted in a significant increase in ABCA1 mRNA expression. However, the inhibition of miR-33a-3p did not significantly increase ABCA1 protein expression within pro-inflammatory iMAECs. Moreover, we failed to detect a significant increase in apoAI-mediated cholesterol efflux within pro-inflammatory iMAECs from miR-33a-3p knockdown. <i>Conclusions</i>: Our results indicative that the knockdown of miR-33a-3p alone does not enhance ABCA1-dependent cholesterol efflux within pro-inflammatory endothelial cells. To gain any atheroprotective benefit from inhibiting miR-33a-3p within pro-inflammatory endothelium, additional anti-atherogenic strategies would likely be needed in unison.</p>","PeriodicalId":49830,"journal":{"name":"Medicina-Lithuania","volume":"61 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11857470/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicina-Lithuania","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/medicina61020329","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background and Objectives: Atherosclerosis is an inflammatory condition that results in cholesterol accumulating within vessel wall cells. Atherosclerotic cardiovascular disease is the leading cause of mortality worldwide due to this disease being a major contributor to myocardial infarctions and cerebrovascular accidents. Research suggests that cholesterol accumulation occurring precisely within arterial endothelial cells triggers atherogenesis and exacerbates atherosclerosis. Furthermore, inflamed endothelium acts as a catalyst for atherosclerotic development. Therefore, enhancing cholesterol removal specifically in pro-inflammatory endothelial cells may be a potential treatment option for atherosclerosis. While we have previously shown that inhibiting the microRNA guide strand miR-33a-5p within pro-inflammatory endothelial cells increases both ABCA1 expression and apoAI-mediated cholesterol efflux, it is unknown whether inhibiting the miR-33a-3p passenger strand in pro-inflammatory endothelial cells causes similar atheroprotective effects. In this study, this is what we aimed to test. Materials and Methods: We used plasmid transfection to knockdown miR-33a-3p expression within cultured pro-inflammatory immortalized mouse aortic endothelial cells (iMAECs). We compared ABCA1 expression and apoAI-mediated cholesterol efflux within these cells to cultured pro-inflammatory iMAECs transfected with a control plasmid. Results: The knockdown of miR-33a-3p expression within pro-inflammatory iMAECs resulted in a significant increase in ABCA1 mRNA expression. However, the inhibition of miR-33a-3p did not significantly increase ABCA1 protein expression within pro-inflammatory iMAECs. Moreover, we failed to detect a significant increase in apoAI-mediated cholesterol efflux within pro-inflammatory iMAECs from miR-33a-3p knockdown. Conclusions: Our results indicative that the knockdown of miR-33a-3p alone does not enhance ABCA1-dependent cholesterol efflux within pro-inflammatory endothelial cells. To gain any atheroprotective benefit from inhibiting miR-33a-3p within pro-inflammatory endothelium, additional anti-atherogenic strategies would likely be needed in unison.
期刊介绍:
The journal’s main focus is on reviews as well as clinical and experimental investigations. The journal aims to advance knowledge related to problems in medicine in developing countries as well as developed economies, to disseminate research on global health, and to promote and foster prevention and treatment of diseases worldwide. MEDICINA publications cater to clinicians, diagnosticians and researchers, and serve as a forum to discuss the current status of health-related matters and their impact on a global and local scale.