Learning-based safety-guaranteed sliding mode affine formation maneuver control of quadrotors vulnerable to cyber-attacks.

Muhammad Maaruf, Sami El-Ferik
{"title":"Learning-based safety-guaranteed sliding mode affine formation maneuver control of quadrotors vulnerable to cyber-attacks.","authors":"Muhammad Maaruf, Sami El-Ferik","doi":"10.1016/j.isatra.2025.02.016","DOIUrl":null,"url":null,"abstract":"<p><p>This article studied the actor-critic learning scheme for safe leader-follower affine formation maneuver control of networked quadrotors under external disturbances, sensor deception attacks, and injection attacks on the actuators. The followers aim to track formation maneuvers such as scaling, shearing, translation, and rotation determined by the leaders. Motivated by increasing safety and performance requirements during formation maneuvering, the dynamic states of the quadrotors are constrained within prescribed safety constraints. A barrier Lyapunov function is employed to ensure that the safety constraints are not violated. Then, a distributed sliding mode control with actor-critic learning is formulated to facilitate accurate leader-follower affine formation maneuvers and reject malicious cyber-attack signals. The input gains that appear due to the attacks might corrupt the control direction. The Nussbaum gain function is coupled to the controller to tackle this problem. The actor system estimates the uncertain dynamics and malicious attack signals, while the critic network evaluates the control performance through the estimated long-term performance index. The overall stability of the closed-loop system has been proven to be bounded using the Lyapunov stability theorem. Finally, simulation results demonstrate the capability of the presented control method.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2025.02.016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article studied the actor-critic learning scheme for safe leader-follower affine formation maneuver control of networked quadrotors under external disturbances, sensor deception attacks, and injection attacks on the actuators. The followers aim to track formation maneuvers such as scaling, shearing, translation, and rotation determined by the leaders. Motivated by increasing safety and performance requirements during formation maneuvering, the dynamic states of the quadrotors are constrained within prescribed safety constraints. A barrier Lyapunov function is employed to ensure that the safety constraints are not violated. Then, a distributed sliding mode control with actor-critic learning is formulated to facilitate accurate leader-follower affine formation maneuvers and reject malicious cyber-attack signals. The input gains that appear due to the attacks might corrupt the control direction. The Nussbaum gain function is coupled to the controller to tackle this problem. The actor system estimates the uncertain dynamics and malicious attack signals, while the critic network evaluates the control performance through the estimated long-term performance index. The overall stability of the closed-loop system has been proven to be bounded using the Lyapunov stability theorem. Finally, simulation results demonstrate the capability of the presented control method.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling and design of power conditioning unit of CubeSat electrical power subsystem with robust nonlinear MPPT controller. Nonlinear acceleration disturbance observer to reject transient peak disturbances for an inertial stabilization-tracking platform. Sensorless Control of Permanent magnet in-wheel motor for EVs Using Global Fast Terminal Sliding Mode Observer. Application of a multi-dimensional synchronous feature mode decomposition for machinery fault diagnosis. Robust finite-time input-to-state stability via impulsive hybrid control for uncertain dynamical systems with disturbances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1