Border Ranks of Positive and Invariant Tensor Decompositions: Applications to Correlations

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Quantum Pub Date : 2025-02-26 DOI:10.22331/q-2025-02-26-1649
Andreas Klingler, Tim Netzer, Gemma De les Coves
{"title":"Border Ranks of Positive and Invariant Tensor Decompositions: Applications to Correlations","authors":"Andreas Klingler, Tim Netzer, Gemma De les Coves","doi":"10.22331/q-2025-02-26-1649","DOIUrl":null,"url":null,"abstract":"The matrix rank and its positive versions are robust for small approximations, i.e. they do not decrease under small perturbations. In contrast, the multipartite tensor rank can collapse for arbitrarily small errors, i.e. there may be a gap between rank and border rank, leading to instabilities in the optimization over sets with fixed tensor rank. Can multipartite positive ranks also collapse for small perturbations? In this work, we prove that multipartite positive and invariant tensor decompositions exhibit gaps between rank and border rank, including tensor rank purifications and cyclic separable decompositions. We also prove a correspondence between positive decompositions and membership in certain sets of multipartite probability distributions, and leverage the gaps between rank and border rank to prove that these correlation sets are not closed. It follows that testing membership of probability distributions arising from resources like translational invariant Matrix Product States is impossible in finite time. Overall, this work sheds light on the instability of ranks and the unique behavior of bipartite systems.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"1 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-02-26-1649","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The matrix rank and its positive versions are robust for small approximations, i.e. they do not decrease under small perturbations. In contrast, the multipartite tensor rank can collapse for arbitrarily small errors, i.e. there may be a gap between rank and border rank, leading to instabilities in the optimization over sets with fixed tensor rank. Can multipartite positive ranks also collapse for small perturbations? In this work, we prove that multipartite positive and invariant tensor decompositions exhibit gaps between rank and border rank, including tensor rank purifications and cyclic separable decompositions. We also prove a correspondence between positive decompositions and membership in certain sets of multipartite probability distributions, and leverage the gaps between rank and border rank to prove that these correlation sets are not closed. It follows that testing membership of probability distributions arising from resources like translational invariant Matrix Product States is impossible in finite time. Overall, this work sheds light on the instability of ranks and the unique behavior of bipartite systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Markovianity and non-Markovianity in quantum and classical systems
IF 3.3 2区 物理与天体物理New Journal of PhysicsPub Date : 2011-06-01 DOI: 10.1088/1367-2630/13/9/093004
B. Vacchini, A. Smirne, Elsi-Mari Laine, J. Piilo, H. Breuer
Measure for the non-Markovianity of quantum processes
IF 2.9 2区 物理与天体物理Physical Review aPub Date : 2010-02-12 DOI: 10.1103/PhysRevA.81.062115
Elsi-Mari Laine, J. Piilo, H. Breuer
Squashed quantum non-Markovianity: a measure of genuine quantum non-Markovianity in states
IF 0 arXiv - PHYS - Other Condensed MatterPub Date : 2023-11-30 DOI: arxiv-2311.18323
Rajeev Gangwar, Tanmoy Pandit, Kaumudibikash Goswami, Siddhartha Das, Manabendra Nath Bera
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
期刊最新文献
On the Computational Hardness of Quantum One-Wayness Operational Quantum Reference Frame Transformations Mpemba effect and super-accelerated thermalization in the damped quantum harmonic oscillator Fault-tolerant Quantum Error Correction Using a Linear Array of Emitters Transformer neural networks and quantum simulators: a hybrid approach for simulating strongly correlated systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1