{"title":"Border Ranks of Positive and Invariant Tensor Decompositions: Applications to Correlations","authors":"Andreas Klingler, Tim Netzer, Gemma De les Coves","doi":"10.22331/q-2025-02-26-1649","DOIUrl":null,"url":null,"abstract":"The matrix rank and its positive versions are robust for small approximations, i.e. they do not decrease under small perturbations. In contrast, the multipartite tensor rank can collapse for arbitrarily small errors, i.e. there may be a gap between rank and border rank, leading to instabilities in the optimization over sets with fixed tensor rank. Can multipartite positive ranks also collapse for small perturbations? In this work, we prove that multipartite positive and invariant tensor decompositions exhibit gaps between rank and border rank, including tensor rank purifications and cyclic separable decompositions. We also prove a correspondence between positive decompositions and membership in certain sets of multipartite probability distributions, and leverage the gaps between rank and border rank to prove that these correlation sets are not closed. It follows that testing membership of probability distributions arising from resources like translational invariant Matrix Product States is impossible in finite time. Overall, this work sheds light on the instability of ranks and the unique behavior of bipartite systems.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"1 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-02-26-1649","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The matrix rank and its positive versions are robust for small approximations, i.e. they do not decrease under small perturbations. In contrast, the multipartite tensor rank can collapse for arbitrarily small errors, i.e. there may be a gap between rank and border rank, leading to instabilities in the optimization over sets with fixed tensor rank. Can multipartite positive ranks also collapse for small perturbations? In this work, we prove that multipartite positive and invariant tensor decompositions exhibit gaps between rank and border rank, including tensor rank purifications and cyclic separable decompositions. We also prove a correspondence between positive decompositions and membership in certain sets of multipartite probability distributions, and leverage the gaps between rank and border rank to prove that these correlation sets are not closed. It follows that testing membership of probability distributions arising from resources like translational invariant Matrix Product States is impossible in finite time. Overall, this work sheds light on the instability of ranks and the unique behavior of bipartite systems.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.